Climate Dynamics

, Volume 36, Issue 7–8, pp 1303–1319 | Cite as

Influence of SST biases on future climate change projections

  • Moetasim Ashfaq
  • Christopher B. Skinner
  • Noah S. Diffenbaugh
Article

Abstract

We use a quantile-based bias correction technique and a multi-member ensemble of the atmospheric component of NCAR CCSM3 (CAM3) simulations to investigate the influence of sea surface temperature (SST) biases on future climate change projections. The simulations, which cover 1977–1999 in the historical period and 2077–2099 in the future (A1B) period, use the CCSM3-generated SSTs as prescribed boundary conditions. Bias correction is applied to the monthly time-series of SSTs so that the simulated changes in SST mean and variability are preserved. Our comparison of CAM3 simulations with and without SST correction shows that the SST biases affect the precipitation distribution in CAM3 over many regions by introducing errors in atmospheric moisture content and upper-level (lower-level) divergence (convergence). Also, bias correction leads to significantly different precipitation and surface temperature changes over many oceanic and terrestrial regions (predominantly in the tropics) in response to the future anthropogenic increases in greenhouse forcing. The differences in the precipitation response from SST bias correction occur both in the mean and the percent change, and are independent of the ocean–atmosphere coupling. Many of these differences are comparable to or larger than the spread of future precipitation changes across the CMIP3 ensemble. Such biases can affect the simulated terrestrial feedbacks and thermohaline circulations in coupled climate model integrations through changes in the hydrological cycle and ocean salinity. Moreover, biases in CCSM3-generated SSTs are generally similar to the biases in CMIP3 ensemble mean SSTs, suggesting that other GCMs may display a similar sensitivity of projected climate change to SST errors. These results help to quantify the influence of climate model biases on the simulated climate change, and therefore should inform the effort to further develop approaches for reliable climate change projection.

Keywords

Climate change Sea surface temperature Global climate modeling 

References

  1. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321(5895):1481–1484CrossRefGoogle Scholar
  2. Ashfaq M et al (2010) Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment––a case study of the United States. J Geophys Res. doi:10.1029/2009JD012965
  3. Bjerknes J (1969) Atmospheric teleconnections from Equatorial Pacific. Mon Weather Rev 97(3):163–172CrossRefGoogle Scholar
  4. Bony S et al (1997) Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing. J Clim 10(8):2055–2077CrossRefGoogle Scholar
  5. Cazenave A et al (2003) Present-day sea level change: observations and causes. Space Sci Rev 108(1–2):131–144CrossRefGoogle Scholar
  6. Chang P et al (2000) The effect of local sea surface temperatures on atmospheric circulation over the tropical Atlantic sector. J Clim 13(13):2195–2216CrossRefGoogle Scholar
  7. Chang CY et al (2007) Seasonal climate of the tropical Atlantic sector in the NCAR community climate system model 3: error structure and probable causes of errors. J Clim 20(6):1053–1070CrossRefGoogle Scholar
  8. Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143CrossRefGoogle Scholar
  9. Easterling DR et al (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074CrossRefGoogle Scholar
  10. Folland CK et al (1986) Sahel rainfall and worldwide sea temperatures, 1901–1985. Nature 320(6063):602–607CrossRefGoogle Scholar
  11. Gillett NP et al (2008) Attribution of cyclogenesis region sea surface temperature change to anthropogenic influence. Geophys Res Lett 35(9):L09707CrossRefGoogle Scholar
  12. Good P et al (2009) Understanding uncertainty in future projections for the tropical Atlantic: relationships with the unforced climate. Clim Dyn 32(2–3):205–218CrossRefGoogle Scholar
  13. Graham NE et al (1994) On the roles of tropical and midlatitude SSTs in forcing interannual to interdecadal variability in the winter Northern Hemisphere circulation. J Clim 7(9):1416–1441CrossRefGoogle Scholar
  14. Hack JJ et al (2006) Simulation of the global hydrological cycle in the CCSM community atmosphere model version 3 (CAM3): mean features. J Clim 19(11):2199–2221CrossRefGoogle Scholar
  15. Hastenrath S (1978) Modes of tropical circulation and climate anomalies. J Atmos Sci 35(12):2222–2231CrossRefGoogle Scholar
  16. Hoerling M et al (2008) What is causing the variability in global mean land temperature? Geophys Res Lett 35(23):L23712CrossRefGoogle Scholar
  17. Hurrell JW et al (2006) The dynamical simulation of the community atmosphere model version 3 (CAM3). J Clim 19(11):2162–2183CrossRefGoogle Scholar
  18. IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UKGoogle Scholar
  19. Large WG, Danabasoglu G (2006) Attribution and Impacts of Upper-Ocean Biases in CCSM3. J Clim 19(11):2325–2346CrossRefGoogle Scholar
  20. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean–atmosphere feedback analysis. J Clim 20(18):4497–4525CrossRefGoogle Scholar
  21. McPhaden MJ, Zhang DX (2002) Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415(6872):603–608CrossRefGoogle Scholar
  22. Meehl GA et al (2005) How much more global warming and sea level rise? Science 307(5716):1769–1772CrossRefGoogle Scholar
  23. Meehl GA et al (2006a) Monsoon regimes in the CCSM3. J Clim 19(11):2482–2495CrossRefGoogle Scholar
  24. Meehl GA et al (2006b) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19(11):2597–2616CrossRefGoogle Scholar
  25. Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14):4407CrossRefGoogle Scholar
  26. Reynolds RW et al (2002) An improved in situ and satellite SST analysis for climate. J Clim 15(13):1609–1625CrossRefGoogle Scholar
  27. Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31(5):587–598CrossRefGoogle Scholar
  28. Rodwell MJ et al (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398(6725):320–323CrossRefGoogle Scholar
  29. Santer BD et al (2006) Forced and unforced ocean temperature changes in Atlantic and Pacific tropical cyclogenesis regions. Proc Natl Acad Sci USA 103(38):13905–13910CrossRefGoogle Scholar
  30. Schneider EK et al (2009) A statistical–dynamical estimate of winter ENSO teleconnections in a future climate. J Clim 22(24):6624–6638CrossRefGoogle Scholar
  31. Song X, Zhang GJ (2009) Convection parameterization, tropical Pacific double ITCZ, and Upper-Ocean Biases in the NCAR CCSM3, part I: climatology and atmospheric feedback. J Clim 22(16):4299–4315Google Scholar
  32. Stroeve J, Serreze M, Drobot S, Gearheard S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic Sea Ice Extent Plummets in 2007. EOS Trans AGU 89(2). doi:10.1029/2008EO020001
  33. Thompson L, Cheng W (2008) Water masses in the Pacific in CCSM3. J Clim 21(17):4514–4528CrossRefGoogle Scholar
  34. Trenberth KE et al (2000) The global monsoon as seen through the divergent atmospheric circulation. J Clim 13(22):3969–3993CrossRefGoogle Scholar
  35. Vecchi GA et al (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441(7089):73–76CrossRefGoogle Scholar
  36. Wang HJ (2001) The weakening of the Asian monsoon circulation after the end of 1970’s. Adv Atmos Sci 18(3):376–386CrossRefGoogle Scholar
  37. Wang CZ (2004) ENSO, Atlantic climate variability, and the Walker and Hadley circulations. In: Diaz HF, Bradley RS (eds) Hadley circulation: present, past and future, vol 21. Kluwer, The Netherlands, pp 173–202 (see also p 511)Google Scholar
  38. Wang B et al (2004) Ensemble simulations of Asian–Australian monsoon variability by 11 AGCMs. J Clim 17(4):803–818CrossRefGoogle Scholar
  39. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684
  40. Zhang GJ, Wang H (2006) Toward mitigating the double ITCZ problem in NCAR CCSM3. Geophys Res Lett 33:L06709. doi:10.1029/2005GL025229

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Moetasim Ashfaq
    • 1
    • 2
    • 3
  • Christopher B. Skinner
    • 1
    • 2
  • Noah S. Diffenbaugh
    • 1
    • 2
    • 4
  1. 1.Department of Environmental Earth System ScienceStanford UniversityStanfordUSA
  2. 2.Department of Earth and Atmospheric SciencesPurdue UniversityWest LafayetteUSA
  3. 3.Climate Change Science Institute, Oak Ridge National LaboratoryOak RidgeUSA
  4. 4.Woods Institute for the EnvironmentStanford UniversityStanfordUSA

Personalised recommendations