Climate Dynamics

, Volume 37, Issue 5–6, pp 933–940 | Cite as

Community structure and dynamics in climate networks

  • Anastasios A. TsonisEmail author
  • Geli Wang
  • Kyle L. Swanson
  • Francisco A. Rodrigues
  • Luciano da Fontura Costa


We consider climate networks constructed from observed and model simulated fields of three climate variables and investigate their community structure. We find that for all fields the number of effective communities is rather small (four to five). We are able to trace the origin of these communities to certain dynamical properties of climate. Our results suggest that the complete complexity of the climate system condenses beyond the ‘weather’ time scales into a small number of low-dimensional interacting components and provide clues as to the nature of the climate subsystems underlying these components.


Networks Teleconnection patterns Climate variability 



Kyle Swanson and Anastasios Tsonis are funded by NSF grant AGS-0902564. Geli Wang is funded by NSFC 40890052. Luciano da F. Costa thanks CNPq (301303/06-1) and FAPESP (05/00587-5) for sponsorship. Francisco Aparecido Rodriges is grateful to FAPESP (07/50633-9).


  1. Albert R, Barabasi A-L (2002) Statistical mechanics of complex networks. Rev Mod Phys 74:1–54CrossRefGoogle Scholar
  2. Ambaum MHP, Hoskins BJ, Stephenson DB (2001) Arctic oscillation or North Atlantic oscillation? J Clim 14:3495–3507CrossRefGoogle Scholar
  3. Arenas A, Diaz-Guilera A, Perez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96:114102CrossRefGoogle Scholar
  4. Barnston AG, Livezey RE (1987) Classification, seasonality, and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126CrossRefGoogle Scholar
  5. da F. Costa L, Rodrigues FA, Travieso G, Villas Boas PR (2007) Characterization of complex networks: a survey of measurements. Adv Phys 56:167–242CrossRefGoogle Scholar
  6. Eichler T, Higgins RW (2006) Climatology and ENSO-related variability of North American extratropical cyclone activity. J Clim 19:2076–2093CrossRefGoogle Scholar
  7. Elsner JB, Jagger TH, Fogarty EA (2009) Visibility network of United States hurricanes. Geophys Res Lett 36:L16702. doi: 10.1029/2009GL039129 CrossRefGoogle Scholar
  8. Farkas IJ, Jeong H, Vicsek T, Barabási A-L, Oltvai ZN (2003) The topology of the transcription regulatory network in the yeast Saccharomyces cerevisiae. Physica A 318:601–612CrossRefGoogle Scholar
  9. Favre A, Gershunov A (2006) Extra-tropical cyclonic/anticyclonic activity in North-Eastern Pacific and air temperature extremes in Western North America. Clim Dyn 26:617–629CrossRefGoogle Scholar
  10. Favre A, Gershunov A (2009) North Pacific cyclonic and anticyclonic transients in a global warming context: possible consequences for Western North American daily precipitation and temperature extremes. Clim Dyn 32:969–987CrossRefGoogle Scholar
  11. GFDL CM2.1 development team (2006) GFDL’s CM2 global coupled models, parts 1–4. J Clim 19:643–740CrossRefGoogle Scholar
  12. Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99:7821–7826CrossRefGoogle Scholar
  13. Gozolchiani A, Yamasaki K, Gazit O, Havlin S (2008) Pattern of climate network blinking links follow El Nino events. Europhys Lett 83:28005CrossRefGoogle Scholar
  14. Guimera R, Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature 433:895–900CrossRefGoogle Scholar
  15. Hack JJ, Kiehl JT, Hurrell JW (1998) The hydrologic and thermodynamic characteristics of NCAR CCM3. J Clim 11:1179–1206CrossRefGoogle Scholar
  16. Held IM, Ting M, Wang H (2002) Northern winter stationary waves: theory and modeling. J Clim 15:2125–2144CrossRefGoogle Scholar
  17. Hofman JM, Wiggins CH (2008) A Bayesian approach to network modularity. Phys Rev Lett 100:258701CrossRefGoogle Scholar
  18. Holme P, Huss M, Jeong H (2003) Subnetwork hierarchies of biochemical pathways. Bioinformatics 19:532–543CrossRefGoogle Scholar
  19. Kistler R et al (2001) The NCEP/NCAR 50-year reanalysis: monthly means, CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  20. Lorenz EN (1991) Dimension of weather and climate attractors. Nature 353:241–244CrossRefGoogle Scholar
  21. Mantegna RN (1999) Hierarchical structure in financial markets. Eur Phys J B 11:193–197CrossRefGoogle Scholar
  22. Mantua NJ, Hare SR, Zhang U, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon productions. Bull Am Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  23. Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci USA 103:8577–8582CrossRefGoogle Scholar
  24. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69:026113CrossRefGoogle Scholar
  25. Strogatz SH (2001) Exploring complex networks. Nature 410:268–276CrossRefGoogle Scholar
  26. Swanson KL, Tsonis AA (2009) Has the climate recently shifted? Geophys Res Lett 36:L06711. doi: 10.1029/2008GL037022 CrossRefGoogle Scholar
  27. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  28. Tsonis AA (1992) Chaos: from theory to applications. Plenum, NYGoogle Scholar
  29. Tsonis AA (2001) The impact of nonlinear dynamics in the atmospheric sciences. Int J Bifurcat Chaos 11:881–902CrossRefGoogle Scholar
  30. Tsonis AA, Elsner JB (1989) Chaos, strange attractors and weather. Bull Am Meteorol Soc 70:16–23CrossRefGoogle Scholar
  31. Tsonis AA, Elsner JB (1996) Mapping the channels of communication between the tropics and higher latitudes in the atmosphere. Physica D 92:237–244CrossRefGoogle Scholar
  32. Tsonis AA, Swanson KL (2008) Topology and predictability of El Nino and La Nina networks. Phys Rev Lett 100:228502CrossRefGoogle Scholar
  33. Tsonis AA, Swanson KL, Roebber PJ (2006) What do networks have to do with climate? Bull Am Meteorol Soc. doi: 10.1175/BAMS-87-5-585
  34. Tsonis AA, Swanson KL, Kravtsov S (2007) A new dynamical mechanism for major climate shifts. Geophys Res Lett 34:L13705. doi: 10.1029/2007GL030288 CrossRefGoogle Scholar
  35. Tsonis AA, Swanson KL, Wang G (2008) On the role of atmospheric teleconnection in climate. J Clim 21:2990–3001CrossRefGoogle Scholar
  36. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  37. Wang H, Fu R (2000) Influence of ENSO SST anomalies and water storm-tracks on the interannual variability of the upper tropospheric water vapor over the Northern Hemisphere extratropics. J Clim 13:59–73CrossRefGoogle Scholar
  38. Webster PJ, Holton JR (1982) Wave propagation through a zonally varying basic flow: the influences of mid-latitude forcing in the equatorial regions. J Atmos Sci 39:722–733CrossRefGoogle Scholar
  39. Yamasaki K, Gozolchiani A, Havlin S (2008) Climate networks around the globe are significantly affected by El Nino. Phys Rev Lett 100:228501CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anastasios A. Tsonis
    • 1
    Email author
  • Geli Wang
    • 2
  • Kyle L. Swanson
    • 1
  • Francisco A. Rodrigues
    • 3
  • Luciano da Fontura Costa
    • 3
  1. 1.Department of Mathematical Sciences, Atmospheric Sciences GroupUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  2. 2.LAGEO, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Institute of Physics at Sao CarlosUniversity of Sao PauloSao CarlosBrazil

Personalised recommendations