Climate Dynamics

, Volume 37, Issue 1–2, pp 391–405

Rossby wave dynamics of the North Pacific extra-tropical response to El Niño: importance of the basic state in coupled GCMs

  • Andrew Dawson
  • Adrian J. Matthews
  • David P. Stevens
Article

Abstract

The extra-tropical response to El Niño in a “low” horizontal resolution coupled climate model, typical of the Intergovernmental Panel on Climate Change fourth assessment report simulations, is shown to have serious systematic errors. A high resolution configuration of the same model has a much improved response that is similar to observations. The errors in the low resolution model are traced to an incorrect representation of the atmospheric teleconnection mechanism that controls the extra-tropical sea surface temperatures (SSTs) during El Niño. This is due to an unrealistic atmospheric mean state, which changes the propagation characteristics of Rossby waves. These erroneous upper tropospheric circulation anomalies then induce erroneous surface circulation features over the North Pacific. The associated surface wind speed and direction errors create erroneous surface flux and upwelling anomalies which finally lead to the incorrect extra-tropical SST response to El Niño in the low resolution model. This highlights the sensitivity of the climate response to a single link in a chain of complex climatic processes. The correct representation of these processes in the high resolution model indicates the importance of horizontal resolution in resolving such processes.

Keywords

Rossby wave dynamics North Pacific Extra-tropical SST El Niño GCM Basic state 

References

  1. AchutaRao K, Sperber K (2002) Simulation of the El Niño southern oscillation: results from the coupled model intercomparison project. Clim Dyn 19(3):191–209CrossRefGoogle Scholar
  2. Alexander MA (1992) Midlatitude atmosphere—ocean interaction during El Niño. Part II: The northern hemisphere atmosphere. J Clim 5(9):959–972CrossRefGoogle Scholar
  3. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231CrossRefGoogle Scholar
  4. Brayshaw D, Hoskins B, Blackburn M (2008) The storm-track response to idealized SST perturbations in an aquaplanet GCM. J Atmos Sci 65(9):2842–2860CrossRefGoogle Scholar
  5. Deser C, Blackmon ML (1995) On the relationship between tropical and North Pacific sea surface temperature variations. J Clim 8(6):1677–1680CrossRefGoogle Scholar
  6. Franzke C, Fraedrich K, Lunkeit F (2000) Low-frequency variability in a simplified atmospheric global circulation model: Storm-track induced ‘spatial resonance’. Q J Roy Meteorol Soc 126(569):2691–2708Google Scholar
  7. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2):147–168CrossRefGoogle Scholar
  8. Guilyardi E, Gualdi S, Slingo J, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean—atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17(24):4623–4629CrossRefGoogle Scholar
  9. Hoskins BJ, Ambrizzi T (1993) Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671CrossRefGoogle Scholar
  10. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196CrossRefGoogle Scholar
  11. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J Roy Meteorol Soc 111(470):877–946CrossRefGoogle Scholar
  12. Hurrell JW, Hack JJ, Phillips AS, Caron J, Yin J (2006) The dynamical simulation of the community atmosphere model version 3 (CAM3). J Clim 19(11):2162–2183CrossRefGoogle Scholar
  13. Inatsu M, Mukougawa H, Xie S (2002) Tropical and extratropical SST effects on the midlatitude storm track. J Meteorol Soc Jpn 80(4B):1069–1076CrossRefGoogle Scholar
  14. Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Ridley JK, Senior CA, Williams KD, Jones A, Rickard GJ, Cusack S, Ingram WJ, Crucifix M, Sexton DMH, Joshi MM, Dong BW, Spencer H, Hill RSR, Gregory JM, Keen AB, Pardaens AK, Lowe JA, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327–1353CrossRefGoogle Scholar
  15. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Leetmaa A, Reynolds B, Chelliah M, Ebisuazaki W, Higgins W, Jonowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  16. Karoly D (1983) Rossby wave propagation in a barotropic atmosphere. Dyn Atmos Oceans 7(2):111–125CrossRefGoogle Scholar
  17. Kiladis GN, Weickmann KM (1992) Circulation anomalies associated with tropical convection during northern winter. Mon Weather Rev 120(9):1900–1923CrossRefGoogle Scholar
  18. Kushnir Y, Robinson WA, Bladé I, Hall NMJ, Peng S, Sutton R (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15(16):2233–2256CrossRefGoogle Scholar
  19. Luksch U, von Storch H (1992) Modelling the low-frequency sea surface temperature variability in the North Pacific. J Clim 5(9):893–906CrossRefGoogle Scholar
  20. Mechoso CR, Robertson AW, Barth N, Davey MK, Delecluse P, Gent PR, Ineson S, Kirtman B, Latif M, Treut HL, Nagai T, Neelin JD, Philander SGH, Polcher J, Schopf PS, Stockdale T, Suarez MJ, Terray L, Thual O, Tribbia JJ (1995) The seasonal cycle over the tropical Pacific in coupled ocean—atmosphere general circulation models. Mon Weather Rev 123(9):2825–2838CrossRefGoogle Scholar
  21. Navarra A, Gualdi SSM, Behera S, Luo JJ, Masson S, Guilyardi E, Delecluse P, Yamagata T (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21(4):730–750CrossRefGoogle Scholar
  22. Norris JR (2000) Interannual and interdecadal variability in the storm track, cloudiness, and sea surface temperature over the summertime North Pacific. J Clim 13(2):422–430CrossRefGoogle Scholar
  23. Peng S, Robinson WA (2001) Relationships between atmospheric internal variability and and the responses to an extratropical SST anomaly. J Clim 14(13):2943–2959CrossRefGoogle Scholar
  24. Philander SG (1990) El Niño, La Niña, and the southern oscillation, 1st edn. Academic Press, LondonGoogle Scholar
  25. Pope V, Stratton R (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19(3):211–236CrossRefGoogle Scholar
  26. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D,Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, Chap climate models and their evaluationGoogle Scholar
  27. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407CrossRefGoogle Scholar
  28. Roberts MJ, Banks H, Gedney N, Gregory J, Hill R, Mullerworth S, Pardaens A, Rickard G, Thorpe R, Wood R (2004) Impact of an eddy-permitting ocean resolution on control and climate change simulations with a global coupled GCM. J Clim 17(1):3–20CrossRefGoogle Scholar
  29. Roberts MJ, Clayton A, Demory ME, Donners J, Vidale PL, Norton W, Shaffrey L, Stevens DP, Stevens I, Wood RA, Slingo J (2009) Impact of resolution on the tropical pacific circulation in a matrix of coupled models. J Clim 22(10):2541–2556CrossRefGoogle Scholar
  30. Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45(7):1228–1251CrossRefGoogle Scholar
  31. Shaffrey LC, Stevens I, Norton WA, Roberts MJ, Vidale PL, Harle JD, Jrrar A, Stevens DP, Woodage MJ, Demory ME, Donners JBCD, Clayton A, Cole JW, Wilson SS, Connolley WM, Davies TM, Iwi AM, Johns TC, King JC, New AL, Slingo JM, Slingo A, Steenman-Clark L, Martin GM (2009) UK-HiGEM: the new UK high resolution global environment model. Model description and basic evaluation. J Clim 22(8):1861–1896CrossRefGoogle Scholar
  32. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777CrossRefGoogle Scholar
  33. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Da CostaBechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes S, Hagemann M, Hólm E, Hoskins BJ, Isaken L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2006) The ERA-40 reanalysis. Q J Roy Meteorol Soc 131(612):2961–3012CrossRefGoogle Scholar
  34. Wilks DS (2006) Statistical analysis in the atmospheric sciences, 2nd edn. Academic Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andrew Dawson
    • 1
  • Adrian J. Matthews
    • 1
    • 2
  • David P. Stevens
    • 1
  1. 1.School of MathematicsUniversity of East AngliaNorwichUK
  2. 2.School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations