Climate Dynamics

, Volume 36, Issue 11–12, pp 2171–2199 | Cite as

Southern Hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation

Article

Abstract

The main goal of this paper is to shed additional light on the reciprocal dynamical linkages between mid-latitude Southern Hemisphere climate and the El Niño-Southern Oscillation (ENSO) signal. While our analysis confirms that ENSO is a dominant source of interannual variability in the Southern Hemisphere, it is also suggested here that subtropical dipole variability in both the Southern Indian and Atlantic Oceans triggered by Southern Hemisphere mid-latitude variability may also provide a controlling influence on ENSO in the equatorial Pacific. This subtropical forcing operates through various coupled air–sea feedbacks involving the propagation of subtropical sea surface temperature (SST) anomalies into the deep tropics of the Atlantic and Indian Oceans from boreal winter to boreal spring and a subsequent dynamical atmospheric response to these SST anomalies linking the three tropical basins at the beginning of the boreal spring. This atmospheric response is characterized by a significant weakening of the equatorial Atlantic and Indian Inter-Tropical Convergence Zone (ITCZ). This weakened ITCZ forces an equatorial “cold Kelvin wave” response in the middle to upper troposphere that extends eastward from the heat sink regions into the western Pacific. By modulating the vertical temperature gradient and the stability of the atmosphere over the equatorial western Pacific Ocean, this Kelvin wave response promotes persistent zonal wind and convective anomalies over the western equatorial Pacific, which may trigger El Niño onset at the end of the boreal winter. These different processes explain why South Atlantic and Indian subtropical dipole time series indices are highly significant precursors of the Niño34 SST index several months in advance before the El Niño onset in the equatorial Pacific. This study illustrates that the atmospheric internal variability in the mid-latitudes of the Southern Hemisphere may significantly influence ENSO variability. However, this surprising relationship is observed only during recent decades, after the so-called 1976/1977 climate regime shift, suggesting a possible linkage with global warming or decadal fluctuations of the climate system.

Keywords

ENSO Southern Hemisphere Long-range predictability Ocean–atmosphere interactions 

References

  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231CrossRefGoogle Scholar
  2. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  3. Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical North Pacific. J Geophys Res 108:4732. doi:10.1029/2003JD003805 CrossRefGoogle Scholar
  4. Annamalai H, Xie S-P, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319CrossRefGoogle Scholar
  5. Behera SK, Yamagata T (2001) Subtropical SST dipole events in the southern Indian Ocean. Geophys Res Lett 28:327–330CrossRefGoogle Scholar
  6. Bretherton C, Smith C, Wallace J (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  7. Carleton AM (2003) Atmospheric teleconnections involving the Southern Ocean. J Geophys Res 108(C4):8080. doi:10.1029/2000JC000379 Google Scholar
  8. Carril AF, Navarra A (2001) Low-frequency variability of the Antarctic circumpolar wave. Geophys Res Lett 28:4623–4626CrossRefGoogle Scholar
  9. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: the connection to monthly atmospheric circulation. J Clim 5:354–369CrossRefGoogle Scholar
  10. Chang P et al (2006) Climate fluctuations of tropical coupled systems—the role of ocean dynamics. J Clim 19:5122–5174CrossRefGoogle Scholar
  11. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño-Southern Oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302 CrossRefGoogle Scholar
  12. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158CrossRefGoogle Scholar
  13. Chiodi AM, Harrison E (2007) Mechanisms of summertime subtropical Southern Indian Ocean sea surface temperature variability: on the importance of humidity anomalies and the meridional advection of water vapor. J Clim 20:4835–4852CrossRefGoogle Scholar
  14. Clarke AJ, Van Gorder S (2003) Improving El Niño prediction using a space–time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys Res Lett 30:52.1–52.4Google Scholar
  15. Cleveland RB, Cleveland WS, McRae JE, Terpenning I (1990) A seasonal-trend decomposition procedure based on loess (with discussion). J Off Stat 6:3–73Google Scholar
  16. de Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003. doi:10.1029/2004JC002378 CrossRefGoogle Scholar
  17. Deser C, Alexander MA, Timlin MS (2003) On the persistence of sea surface temperature anomalies in midlatitudes. J Clim 16:57–72CrossRefGoogle Scholar
  18. Dominiak S, Terray P (2005) Improvement of ENSO prediction using a linear regression model with a Southern Indian Ocean sea surface temperature predictor. Geophys Res Lett 32:L18702. doi:10.1029/2005GL023153 CrossRefGoogle Scholar
  19. Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33:L11701. doi:10.1029/2006GL025871 CrossRefGoogle Scholar
  20. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153CrossRefGoogle Scholar
  21. England MH, Ummenhofer CC, Santoso A (2006) Interannual rainfall extremes over southwest West Australia linked to Indian Ocean climate variability. J Clim 19:1948–1969CrossRefGoogle Scholar
  22. Fauchereau N, Trzaska S, Richard Y, Roucou P, Camberlin P (2003) Sea-surface temperature co-variability in the southern Atlantic and Indian oceans and its connections with the atmospheric circulation in the Southern Hemisphere. Int J Climatol 23:663–677CrossRefGoogle Scholar
  23. Florenchie P, Reason CJC, Lutjeharms JRE, Rouault M, Roy C, Masson S (2004) Evolution of interannual warm and cold events in the Southeast Atlantic Ocean. J Clim 17:2318–2334CrossRefGoogle Scholar
  24. Flugel M, Chang P, Penland C (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140CrossRefGoogle Scholar
  25. Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Q J Meteorol Soc 106:447–462CrossRefGoogle Scholar
  26. Gillet NP, Thomson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275CrossRefGoogle Scholar
  27. Graham NE, Barnett TP (1987) Sea surface temperature, surface wind divergence and convection over tropical Oceans. Science 238:657–659CrossRefGoogle Scholar
  28. Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15:3043–4395CrossRefGoogle Scholar
  29. Hermes JC, Reason CJC (2005) Ocean model diagnosis of interannual coevolving SST variability in the South Indian and South Atlantic Oceans. J Clim 18:2864–2882CrossRefGoogle Scholar
  30. Hobbs WR, Raphael MN (2007) A representative time-series for the Southern Hemisphere zonal wave 1. Geophys Res Lett 34:L05702CrossRefGoogle Scholar
  31. Huang B, Shukla J (2006) Interannual SST variability in the southern subtropical and extra-tropical ocean. COLA Tech. Report, 223, 20 ppGoogle Scholar
  32. Huang B, Shukla J (2007) Interannual variability of the south indian ocean in observations and a coupled model. COLA Tech. Report, 235, 49 ppGoogle Scholar
  33. Izumo T, Vialard J, Lengaigne M, de Boyer Montegut C, Behera SK, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nat Geosci 3:168–172. doi:10.1038/ngeo760 CrossRefGoogle Scholar
  34. Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567CrossRefGoogle Scholar
  35. Jin D, Kirtman B (2009) Why the Southern Hemisphere ENSO responses lead ENSO. J Geophys Res 114:D23101. doi:10.1029/2009JD012657 CrossRefGoogle Scholar
  36. Jin EK et al (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664 Co authorsCrossRefGoogle Scholar
  37. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  38. Kanamitsu M, Ebisuzaki W, Woolen J, Potter J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DEO AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643CrossRefGoogle Scholar
  39. Karoly DJ (1989) Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2:1239–1252CrossRefGoogle Scholar
  40. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29:2125. doi:10.1029/2002GL015924 CrossRefGoogle Scholar
  41. Kidson JW, Renwick JA (2002) The southern hemisphere evolution of ENSO during 1981–99. J Clim 15:847–863CrossRefGoogle Scholar
  42. Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801CrossRefGoogle Scholar
  43. Kug J-S, Il An S-, Jin F-F, Kang I-S (2005) Preconditions for El Niño and La Niña onsets and their relation to the Indian Ocean. Geophys Res Lett 32:L05706. doi:10.1029/2004GL021674 CrossRefGoogle Scholar
  44. Kug JS, Kirtman B, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean in an interactive ensemble coupled model. J Clim 19:6371–6381CrossRefGoogle Scholar
  45. Kwok R, Comiso JC (2002) Southern ocean climate and sea ice anomalies associated with the southern oscillation. J Clim 15:487–501CrossRefGoogle Scholar
  46. L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287CrossRefGoogle Scholar
  47. Lau KM, Chan PH (1988) Intraseasonal and interannual variations of tropical convection: a possible link between the 40–50 day oscillation and ENSO. J Atmos Sci 45:506–521CrossRefGoogle Scholar
  48. Lau NC, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309CrossRefGoogle Scholar
  49. Lau NC, Nath MJ (2003) Atmosphere–ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20CrossRefGoogle Scholar
  50. Lau KM, Wu HT, Bony S (1997) The role of large-scale atmospheric circulation in the relationship between tropical convection and sea surface temperature. J Clim 10:381–392CrossRefGoogle Scholar
  51. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  52. Lindzen RS, Nigam S (1987) On the role of sea surface temperature gradients in forcing low-level winds and convergence in the Tropics. J Atmos Sci 44:2418–2436CrossRefGoogle Scholar
  53. Luo JJ, Zhang R, Behera S, Masumoto Y, Jin FF, Lukas R, Yamagata T (2009) Interaction between El Niño and Extreme Indian Ocean Dipole. J Clim (in press)Google Scholar
  54. McPhaden MJ, Zhang X, Hendon HH, Wheeler MC (2006) Large scale dynamics and MJO forcing of ENSO variability. Geophys Res Lett 33:L16702. doi:10.1029/2006GL026786 CrossRefGoogle Scholar
  55. Mo KC (2000) Relationships between low-frequency variability in the southern hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610CrossRefGoogle Scholar
  56. Moore AM, Kleeman R (1999) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220CrossRefGoogle Scholar
  57. Morioka Y, Tozuka T, Yamagata T (2009) Climate variability in the Southern Indian Ocean as revealed by self-organizing maps. Clim Dyn (submitted)Google Scholar
  58. Penland C, Matrasova L (2006) Studies of El Niño and interdecadal variability in tropical sea surface temperatures using a nonnormal filter. J Clim 19:5796–5815CrossRefGoogle Scholar
  59. Penland C, Matrasova L (2008) A Southern Hemisphere footprint in American Midwest precipitation. Geophys Res Lett 35:L09703. doi:10.1029/2008GL033612 CrossRefGoogle Scholar
  60. Peterson R, White WB (1998) Slow oceanic teleconnections linking tropical ENSO and the Antarctic circumpolar wave. J Geophys Res 103:24573–24583CrossRefGoogle Scholar
  61. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  62. Renwick JA (2005) Persistent positive anomalies in the Southern Hemisphere circulation. J Clim 133:977–988Google Scholar
  63. Ribera P, Mann ME (2003) ENSO related variability in the Southern Hemisphere, 1948–2000. Geophys Res Lett. doi:10.1029/2002GL015818
  64. Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett. doi:10.1029/2009GL040048
  65. Sara S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517CrossRefGoogle Scholar
  66. Sterl A, Hazeleger W (2003) Coupled variability and air–sea interaction in the South Atlantic Ocean. Clim Dyn 21:559–571CrossRefGoogle Scholar
  67. Suzuki R, Behera SK, Iizuka S, Yamagata T (2004) Indian Ocean subtropical dipole simulated using a coupled general circulation model. J Geophy Res 109. doi:10.1029/2003JC001974
  68. Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Niño-Southern Oscillation: a new perspective. J Clim 18:1351–1368CrossRefGoogle Scholar
  69. Terray P, Dominiak S, Delecluse P (2005) Role of the southern Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Clim Dyn 24:169–195. doi:10.1007/s00382-004-0480-3 CrossRefGoogle Scholar
  70. Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO-dipole variability in a coupled ocean-atmosphere model. Clim Dyn 28:553–580. doi:10.1007/s00382-006-0192-y CrossRefGoogle Scholar
  71. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I. Month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  72. Toniazzo T (2009) Climate variability in the south-eastern tropical Pacific and its relation with ENSO: a GCM study. Clim Dyn. doi:10.1007/s00382-009-0602-z
  73. Trenberth KE, Mo KC (1985) Blocking in the Southern Hemisphere. Mon Weather Rev 113:3–21CrossRefGoogle Scholar
  74. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau N-C, Ropelewski C (1998) Progress during TOGA in understanding and modelling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14 291–14 324CrossRefGoogle Scholar
  75. Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) The evolution of ENSO and global atmospheric surface temperatures. J Geophys Res 107(D8). doi:10.1029/2000JD000298
  76. Tziperman E, Yu L (2007) Quantifying the dependence of westerly wind bursts on the large-scale tropical Pacific SST. J Clim 20:2760–2768CrossRefGoogle Scholar
  77. Uppala S et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012 CoauthorsCrossRefGoogle Scholar
  78. Van Loon H (1984) The Southern Oscillation. Part III. Associations with the trades and with the trough in the westerlies of the South Pacific Ocean. Mon Weather Rev 112:947–954CrossRefGoogle Scholar
  79. Van Loon H, Shea DJ (1987) The Southern Oscillation. Part VI. Anomalies of sea level pressure on the Southern Hemisphere and of Pacific sea surface temperature during the development of a warm event. Mon Weather Rev 115:370–379CrossRefGoogle Scholar
  80. Venegas SA, Mysak LA, Straub DN (1997) Atmosphere–ocean coupled variability in the South Atlantic. J Clim 10:2904–2920CrossRefGoogle Scholar
  81. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28:3923–3926CrossRefGoogle Scholar
  82. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675CrossRefGoogle Scholar
  83. Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the pacific: the role of thermodynamic coupling and seasonality. J Clim 22:518–534CrossRefGoogle Scholar
  84. Wang C (2006) An overlooked feature of tropical climate: inter-Pacific–Atlantic variability. Geophys Res Lett 33:L12702. doi:10.1029/2006GL026324 CrossRefGoogle Scholar
  85. Watanabe M, Jin F-F (2002) Role of Indian Ocean warming in the development of Philippine Sea anticyclone during ENSO. Geophys Res Lett 29. doi:10.1029/2001GL014318
  86. Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73CrossRefGoogle Scholar
  87. White WB, Annis J (2004) Influence of the Antarctic Circumpolar Wave on El Niño and its multidecadal changes from 1950–2001. J Geophys Res 109(C0):6019. doi:10.1029/2002JC001666 CrossRefGoogle Scholar
  88. White WB, Chen S-C, Allan RJ, Stone RC (2002) Positive feedbacks between the Antarctic Circumpolar Wave and the global El Niño-Southern Oscillation Wave. J Geophys Res 107(C10):3165. doi:10.1029/2000JC000581 CrossRefGoogle Scholar
  89. Wright PB (1986) Precursors of the Southern Oscillation. J Climatol 6:17–30CrossRefGoogle Scholar
  90. Wu RG, Kirtman BP (2004) Understanding the impacts of the Indian Ocean on ENSO variability in a coupled GCM. J Clim 17:4019–4031CrossRefGoogle Scholar
  91. Xie S-P, Philander SGH (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350Google Scholar
  92. Yu J-Y, Mechoso CR, McWilliams JC, Arakawa A (2002) Impacts of the Indian Ocean on the ENSO cycle. Geophys Res Lett 29:1204. doi:10.1029/2001GL014098 CrossRefGoogle Scholar
  93. Yu L, Jin X, Weller RA (2008) Multidecade Global Flux Datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) Project: latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux Project Technical Report OA-2008-01. Woods Hole, MA, 64 ppGoogle Scholar
  94. Zhang Y, Norris JR, Wallace JM (1998) Seasonality of large-scale atmosphere-ocean interaction over the North Pacific. J Clim 11:2473–2481CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.LOCEAN-IPSLIRD/CNRS/UPMC/MNHNParis Cedex 05France

Personalised recommendations