Climate Dynamics

, Volume 36, Issue 11–12, pp 2103–2112 | Cite as

Warm winds from the Pacific caused extensive Arctic sea-ice melt in summer 2007

  • Rune G. GraversenEmail author
  • Thorsten Mauritsen
  • Sybren Drijfhout
  • Michael Tjernström
  • Sebastian Mårtensson


During summer 2007 the Arctic sea-ice shrank to the lowest extent ever observed. The role of the atmospheric energy transport in this extreme melt event is explored using the state-of-the-art ERA-Interim reanalysis data. We find that in summer 2007 there was an anomalous atmospheric flow of warm and humid air into the region that suffered severe melt. This anomaly was larger than during any other year in the data (1989–2008). Convergence of the atmospheric energy transport over this area led to positive anomalies of the downward longwave radiation and turbulent fluxes. In the region that experienced unusual ice melt, the net anomaly of the surface fluxes provided enough extra energy to melt roughly one meter of ice during the melting season. When the ocean successively became ice-free, the surface-albedo decreased causing additional absorption of shortwave radiation, despite the fact that the downwelling solar radiation was smaller than average. We argue that the positive anomalies of net downward longwave radiation and turbulent fluxes played a key role in initiating the 2007 extreme ice melt, whereas the shortwave-radiation changes acted as an amplifying feedback mechanism in response to the melt.


Arctic Sea ice Energy transport Greenhouse effect Surface-albedo feedback 



The authors are thankful to Per Pemberton, SMHI, for providing sea-ice model data and to John Walsh, Mxolisi Shongwe, Frank Selten, and Robert Pickart for useful comments on the manuscript. R. Graversen is funded by Ministry of Transport, Public Works and Water Management, The Netherlands, within the project Abrupt Climate Scenarios, and by International Meteorological Institute (IMI), Sweden. Michael Tjernström is supported by the DAMCOLES EU 6th Framework research program. The ERA-Interim reanalysis data was obtained from the ECMWF data server at, whereas NCEP-Reanalysis 2 data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at


  1. Comiso JC, Parkinson CL, Gersten R, Stock L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi: 10.1029/2007GL031972 CrossRefGoogle Scholar
  2. Cuxart J, Holtslag AAM, Beare R, Beljaars A, Cheng A, Conangla L, Ek M, Freedman F, Hamdi R, Kerstein A, Kitagawa H, Lenderik G, Lewellen D. Mailhot J, Mauritsen T, Perov V, Schayes G, Steeneveld G-J, Svensson G, Taylor T, Wunsch S, Weng W, Xu K-M (2006) Single-column intercomparison for a stably stratified atmospheric boundary layer. Bound Layer Met 118:273–303CrossRefGoogle Scholar
  3. Döscher R, Wyser K, Meier HEM, Qian M (2009) Climate predictability of the Arctic in a regional coupled ocean-ice-atmosphere model, Clim Dyn, (in press)Google Scholar
  4. Fouquart Y, Bonnel B (1980) Computation of solar heating of the earth’s atmosphere—a new parameterization. Beiträge zur Physik der Atmosphäre 53:35–62Google Scholar
  5. Graversen RG (2006) Do changes in the mid-latitude circulation have any impact on the Arctic surface air temperature trend? J Clim 19:5422–5438CrossRefGoogle Scholar
  6. Graversen RG, Källén E, Tjernström M, Körnich H (2007) Atmospheric mass-transport inconsistencies in the ERA-40 reanalysis. Q J R Meteorol Soc 133:673–680CrossRefGoogle Scholar
  7. Graversen RG, Mauritsen T, Tjernström M, Källén E, Svensson G (2008) Vertical structure of recent Arctic warming. Nature 451(3 January):53–57CrossRefGoogle Scholar
  8. Holland M, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232CrossRefGoogle Scholar
  9. Holland M, Bitz CM, Hunke EC, Lipscomp WH, Schramm JL (2006) Influence of the sea ice thickness distribution on polar climate in CCSM3. J Clim 19:2398–2414CrossRefGoogle Scholar
  10. Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RE (2002) An annual cycle of Arctic surface cloud forcing at SHEBA. J Geophys Res 107. doi: 10.1029/2000JC000439
  11. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GA, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH, Hasselmann K, Cattle HP (2004) Arctic climate change: observed and modeled temperature and sea-ice variability. Tellus 56A:328–341CrossRefGoogle Scholar
  12. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DEO AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643Google Scholar
  13. Kay JE, L’Ecuyer T, Gettelman A, Stephens G, O’Dell C (2008) The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice minimum. Geophys Res Lett 35:L08503. doi: 10.1029/2008GL033451 CrossRefGoogle Scholar
  14. Lindsay RW, Zhang J, Schweiger A, Steele M, Stern H (2009) Arctic sea ice retreat in 2007 follows thinning trend. J Clim 22:165–176CrossRefGoogle Scholar
  15. L’Heureux ML, Krumar A, Bell GD, Halpert MS, Higgins RW (2008) Role of the Pacific-North American (PNA) pattern in the 2007 Arctic sea ice decline. Geophys Res Lett 35:L20701. doi: 10.1029/2008GL035205 CrossRefGoogle Scholar
  16. Mlawer EJ, Taubman SJ, Brown PD, Iacano MJ, Cloufg SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16,663–16,682CrossRefGoogle Scholar
  17. Maslanik J, Drobot S, Fowler C, Emery W, Barry R (2007) On the Arctic climate paradox and the continuing role of atmospheric circulation in affecting sea ice conditions. Geophys Res Lett 34:L03711. doi: 10.1029/2006GL028269 CrossRefGoogle Scholar
  18. Overland JE, Wang M, Salo S (2008) The recent Arctic warm period. Tellus 60A:589–597CrossRefGoogle Scholar
  19. Raval A, Ramanathan V (1989) Observational determination of the greenhouse effect. Nature 342:758–761CrossRefGoogle Scholar
  20. Perovich DK, Richter-Menge JA, Jones KF, Light B (2008) Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007. Geophys Res Lett 35:L11501. doi: 10.1029/2008GL034007 CrossRefGoogle Scholar
  21. Polyakov IV, Alekseev GV, Bekryaev RV, Bhatt U, Colony RL, Johnson MA, Karklin VP, Makshtas AP, Walsh D, Yulin AV (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29(18):1878. doi: 10.1029/2001GL011111 CrossRefGoogle Scholar
  22. Rigor IG, Colony RL, Martin S (2000) Variations in surface air temperature observations in the Arctic 1979–97. J Clim 13:896–914CrossRefGoogle Scholar
  23. Schweiger AJ, Zhang J, Lindsay RW, Steele M (2008) Did unusually skies help drive the record sea ice minimum of 2007. Geophys Res Lett 35:L10503. doi: 10.1029/2008GL033463 CrossRefGoogle Scholar
  24. Serreze MC, Francis J (2006) The Arctic amplification debate. Clim Chan 76:241–264CrossRefGoogle Scholar
  25. Simmons A, Uppala S, Dee D, Kobayashi S (2006) ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35Google Scholar
  26. Simon C, Arris L, Heal B (2005) Arctic climate impact assessment. Cambridge Univ. Press, LondonGoogle Scholar
  27. Stroeve J, Holland MM, Meier W, Scambos T, Serreze MC (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi: 10.1029/2007GL029703 CrossRefGoogle Scholar
  28. Trenberth KE (1991) Climate Diagnostics from global analysis: conservation of mass in ECMWF Analysis. J Clim 4:707–722CrossRefGoogle Scholar
  29. Tjernström M (2007) Is there a diurnal cycle in the summer cloud-capped Arctic boundary layer. J Atm Sci 64:3970–3984CrossRefGoogle Scholar
  30. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold V da C, Florino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woolen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  31. Wang M, Overland JE (2009) A sea ice free summer Arctic within 30 years? Geophys Res Lett 36:L07502. doi: 10.1029/2009GL037820 CrossRefGoogle Scholar
  32. Zhang X, Sorteberg A, Zhang J, Gerdes R, Comiso JC (2008a) Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys Res Lett 35:L22701. doi: 10.1029/2008GL035607 CrossRefGoogle Scholar
  33. Zhang J, Lindsay R, Steele M, Schweiger A (2008b) What drove the dramatic retreat of Arctic sea ice during summer 2007. Geophys Res Lett 35:L11505. doi: 10.1029/2008GL034005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Rune G. Graversen
    • 1
    Email author
  • Thorsten Mauritsen
    • 2
  • Sybren Drijfhout
    • 1
  • Michael Tjernström
    • 3
  • Sebastian Mårtensson
    • 3
  1. 1.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands
  2. 2.Max-Planck Institute for MeteorologyHamburgGermany
  3. 3.Department of MeteorologyStockholm UniversityStockholmSweden

Personalised recommendations