Climate Dynamics

, Volume 37, Issue 1–2, pp 237–252 | Cite as

Spatiotemporal drought variability in northwestern Africa over the last nine centuries

  • Ramzi TouchanEmail author
  • Kevin J. Anchukaitis
  • David M. Meko
  • Mohamed Sabir
  • Said Attalah
  • Ali Aloui


Changes in precipitation patterns and the frequency and duration of drought are likely to be the feature of anthropogenic climate change that will have the most direct and most immediate consequences for human populations. The latest generation of state-of-the-art climate models project future widespread drying in the subtropics. Here, we reconstruct spatially-complete gridded Palmer drought severity index values back to A.D. 1179 over Morocco, Algeria, and Tunisia. The reconstructions provide long-term context for northwest African hydroclimatology, revealing large-scale regional droughts prior to the sixteenth century, as well as more heterogeneous patterns in sixteenth, eighteenth, and twentieth century. Over the most recent decades a shift toward dry conditions over the region is observed, which is consistent with general circulation model projections of greenhouse gas forced enhanced regional subtropical drought.


Tree-ring Drought Climate field reconstruction Mediterranean Northwestern Africa 



In Morocco we thank the Ministry of Agriculture, the Department of Forestry, and the National School of Forest Engineering, the Director (Driss Misbah) and the staff of Direction of the Rif High Commissariat of Water, Forestry and Combating Desertification, the Director (Abdelaziz Houseini) and the staff of Direction of the Oriental High Commissariat for Water, Forestry and Combating Desertification, the Director (Mustapha Khalladi) and the staff of Direction of Moyen Atlas of High Commissariat of Water, Forestry and Desertification Combating, the Chief (Mohamed Benziane) and staff of the National Center of Forestry Research, and the Director and staff of the National School of Forest Engineering for making this study possible. We wish to thank our colleagues from Algeria, especially Abdelmalek Mohamed Azzedine Idder (Ecosystem Laboratory, University of Ouargla), Belkitir Dadamoussa (former Director, Ecosystem Laboratory, University of Ouargla), Titah (General Director of Forests), Mohamed Seghir Mellouhi (former General Director of Forests), Hocine Medjedoub (former Director of Forest, Betna), Abdallatif Guasmi (Director of Forest, Batna), Saidi Belkacem (Directory of Forest in Khenchela), Haddad Moussa (National Park of Tikdjda, Bouira), Mohamed Tizioui, Said Abderahmani (National Park of Belezma), Athmane Briki (Betna Forest Department), Ali Loukkas (National Park of Theniet el had), Chabane Cheriet (Director of Forest in Tiziouzou), Tidjani Mohamed El-khamis (former President of the University of Ouargla), and Ahmed Boutarfaia (President of the University of Ouargla). We wish to thank our colleagues from Tunisia, including Toumi Lamjed (Directeur général de l’ISPT (Institut Sylvo-Pastoral de Tabarka), Mougou Abdelaziz Président de l’IRESA (Institution de la Recherche et l’Enseignement Supérieur Agricole), Rejeb Néjib Directeur général de l’INRGREF (Institut national de recherche en génie rural, eaux et for\(\hat{\hbox{e}}\)ts), Fekih Salem Ahmed Ridha Directeur génŕal des for\(\hat{\hbox{e}}\) ts, and the forest technicians of Siliana, Kef, Kasserine, Ain Draham, and Jendouba for their great help and support in making this study possible. We thank Rachid Ilmen, Mohamed El Youssfi, and Rachid Azzam, Salaheddine Saadine, and Said Slimani for their valuable field assistance. We thank Christopher Baisan, Gregg Garfin, Jeffrey Dean, Paul Sheppard, and Martin Munro for their advice and suggestions. We also thank Jeffrey Balmat, Nesat Erkan, Jim Burns, Jeremy Goral, Julie Wong, and Salah Eddine Sadine for their valuable assistance in both the field and laboratory. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM), for their roles in making available the WCRP CMIP3 multi-model dataset. Support of that dataset is provided by the Office of Science, U.S. Department of Energy. This is LDEO Contribution 7342 (KJA). Funding was provided by the US National Science Foundation, Earth System History (ESH0317288).

Supplementary material

382_2010_804_MOESM1_ESM.pdf (678 kb)
PDF (678 KB)


  1. Aloui A (1982) Recherches dendroclimatologiques en Kroumirie (Tunisie). PhD thesis, Universite Aix-Marseille IIIGoogle Scholar
  2. Aloui A, Serre-Bachet F (1987) Analyse dendroclimatologique comparée de six populations de chêne zeen et d’une population de pin maritime du nord-ouest de la Tunisie. Ecol Mediterr 13(3):55–74Google Scholar
  3. Ammann CM, Wahl ER (2007) The importance of the geophysical context in statistical evaluations of climate reconstruction procedures. Clim Change 85(1–2):71–88. doi: 10.1007/s10584-007-9276-x CrossRefGoogle Scholar
  4. Belkheiri A, Compte JP, Khabotti AE, Lahmouri A, Mirouah D (1987) Bilan de cinq anées de sécheresse au Maroc. Rev Eau Dev 3:10–26Google Scholar
  5. Berger A, Guiot J, Mathieu L, Munaut A (1979) Cedar tree-rings and climate in Morocco. Tree-Ring Bull 39:61–75Google Scholar
  6. Bloomfield P (2000) Fourier analysis of time series: an introduction. Wiley-Interscience. New YorkCrossRefGoogle Scholar
  7. Brooks K, Ffolliott PF, Gregersen HM, Thames JL (1991) Hydrology and the management of watersheds. Iowa State University Press, AmesGoogle Scholar
  8. Chbouki N (1992) Spatio-temporal characteristics of drought as inferred from tree-ring data in Morocco. PhD thesis, University of Arizona, TucsonGoogle Scholar
  9. Chbouki N, Stockton CW, Myers D (1995) Spatio-temporal patterns of drought in Morocco. Int J Climatol 15:187–205CrossRefGoogle Scholar
  10. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22(8):1982–2005CrossRefGoogle Scholar
  11. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Ninõ-Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424:271–276CrossRefGoogle Scholar
  12. Cook ER (1985) A time series approach to tree-ring standardization. PhD thesis, University of Arizona, Tucson, AZ, USAGoogle Scholar
  13. Cook ER, Briffa KR (1990) A comparison of some tree-ring standardization methods. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Kluwer, Dordrecht, pp 104–123Google Scholar
  14. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol 14:379–402CrossRefGoogle Scholar
  15. Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12(4):1145–1162CrossRefGoogle Scholar
  16. Cook ER, D’Arrigo RD, Mann ME (2002) A well-verified, multiproxy reconstruction of the winter North Atlantic oscillation index since AD 1400. J Clim 15:1754–1764CrossRefGoogle Scholar
  17. Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle D (2004) Long-term aridity changes in the western United States. Science 306(5698):1015–1018CrossRefGoogle Scholar
  18. Cook ER, Seager R, Cane MA, Stahle DW (2007) North American drought: reconstructions, causes, and consequences. Earth Sci Rev 81(1–2):93–134CrossRefGoogle Scholar
  19. Critchfield HJ (1983) General climatology, 4th edn. Prentice-Hall, Englewood Cliffs, 453 ppGoogle Scholar
  20. Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5(6):1117–1130CrossRefGoogle Scholar
  21. Esper J, Frank D, Büntgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34:L17702. doi: 10.1029/2007GL030844 CrossRefGoogle Scholar
  22. Glueck MF, Stockton CW (2001) Reconstruction of the North Atlantic oscillation, 1429–1983. Int J Climatol 21:1453–1465CrossRefGoogle Scholar
  23. Goodess CM, Jones PD (2002) Links between circulation and changes in the characteristics of Iberian rainfall. Int J Climatol 22:1593–1615CrossRefGoogle Scholar
  24. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699CrossRefGoogle Scholar
  25. Hoerling MP, Kumar A (2003) The perfect ocean for drought. Science 299:691–694CrossRefGoogle Scholar
  26. Holmes R (1983) Computer assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 44:69–75Google Scholar
  27. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103(C9):18,567–18,589CrossRefGoogle Scholar
  28. Kempes CP, Myers OB, Breshears DD, Ebersole JJ (2007) Comparing response of Pinus edulis tree-ring growth to five alternate moisture indices using historic meteorological data. J Arid Environ. doi: 10.1016/j.jaridenv.2007.07.009
  29. Knippertz P, Christoph M, Speth P (2003a) Long-term precipitation variability in Morocco and the link to the large-scale circulation in recent and future climates. Meteorol Atmos Phys 83(1):67–88CrossRefGoogle Scholar
  30. Knippertz P, Ulbrich U, Marques F, Corte-Real J (2003b) Decadal changes in the link between El Nino and springtime north Atlantic oscillation and European-north African rainfall. Int J Climatol 23:1293–1311CrossRefGoogle Scholar
  31. Lamb PJ, Hamly ME, Portis DH (1997) North Atlantic oscillation. Geo Observateur 7:103–113Google Scholar
  32. Li S, Robinson WA, Peng S (2003) Influence of the North Atlantic SST tripole on northwest African rainfall. J Geophys Res 108(D19):4594–4610Google Scholar
  33. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  34. Mann ME (2004) On smoothing potentially non-stationary climate time series. Geophys Res Lett 31(7):L07214. doi: 10.1029/2004GL019569 CrossRefGoogle Scholar
  35. Maraun D, Kurths J (2004) Cross wavelet analysis: significance testing and pitfalls. Nonlinear Process Geophys 11(4):505–514CrossRefGoogle Scholar
  36. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset. Bull Am Meteorol Soc 88:1383–1394CrossRefGoogle Scholar
  37. Meko D (1997) Dendroclimatic reconstruction with time varying predictor subsets of tree indices. J Clim 10:687–696CrossRefGoogle Scholar
  38. Meko DM, Woodhouse CA (2005) Tree-ring footprint of joint hydrologic drought in Sacramento and Upper Colorado river basins, western USA. J Hydrol 308(1–4):196–213CrossRefGoogle Scholar
  39. Messaoudene M (1989) Approche dendroclimatologique et productivité de Quercus afares Pomel et Quercus canariensis Willd. dans les massifs forestiers de l’Akfadou et de Beni-Ghobri en Algérie. PhD thesis, Université Aix-Marseille IIIGoogle Scholar
  40. Messaoudene M, Tessier L (1997) Relations cerne-climat dans des peuplements de Quercus afares Willd et Quercus canariensis Pomel en Algérie. Annales des Sciences forestiéres 54:347–358CrossRefGoogle Scholar
  41. Munaut AV, Berger AL, Guiot J, Mathieu L (1979) Dendroclimatological studies on Cedars in Morocco. In: Gautier D, Lesgards R, Aubry M (eds) Evolution of planetary atmospheres and climatology of the Earth, pp 373–379Google Scholar
  42. Nicholson SE, Wigley TML (1984) Drought in Morocco. Part I: the general climatology of drought. Report to the Conseil Supérieur de l’eau, MarocGoogle Scholar
  43. Palmer WC (1965) Meteorological drought. Technical report, U.S. Weather Bureau Research Paper 45Google Scholar
  44. Safar W, Serre-Bachet F, Tessier L (1992) Les plus vieux pins d’Alep vivants connus. Dendrochronologia 10:41–52Google Scholar
  45. Seager R, Ting M, Held I, Kushnir Y, Lu J, Vecchi G, Huang HP, Harnik N, Leetmaa A, Lau NC, Li C, Velez J, Naik N (2007a) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316(5828):1181–1184CrossRefGoogle Scholar
  46. Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook ER (2007b) Blueprints for Medieval hydroclimate. Quat Sci Rev 26:2322–2336CrossRefGoogle Scholar
  47. Serre-Bachet F (1969) Variations de l’epaisseur des anneux chez le Thuya de Barbarie (Tetraclinis articulata (Vahl) Mast.) et climat en Tunisie. Annales de la Faculte des Sciences de Marseille 42:193–204Google Scholar
  48. Stokes M, Smiley T (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  49. Swearingen WD (1992) Drought hazard in Morocco. Geogr Rev 82(4):401–412CrossRefGoogle Scholar
  50. Swetnam TW (1985) Using dendrochronology to measure radial growth of defoliated trees. USDA Forest Service, Cooperative State Research Service, Agriculture Handbook 639:1–39Google Scholar
  51. Tessier L, Nola P, Serre-Bachet F (1994) Deciduous Quercus in the Mediterranean region: tree-ring/climate relationships. New Phytol 126:355–367CrossRefGoogle Scholar
  52. Thompson DWJ, Kennedy JJ, Wallace JM, Jones PD (2008) A large discontinuity in the mid-twentieth century in observed global-mean surface temperature. Nature 453(7195):646–649CrossRefGoogle Scholar
  53. Till C (1987) The summary response function of Cedrus atlantica in Morocco. Tree-Ring Bull 47:23–36Google Scholar
  54. Till C, Guiot J (1990) Reconstruction of precipitation in Morocco since 1100 AD based on Cedrus atlantica tree-ring widths. Quat Res 33:337–351CrossRefGoogle Scholar
  55. Touchan R, Anchukaitis KJ, Meko DM, Attalah S, Baisan C, Aloui A (2008a) Long term context for recent drought in northwestern Africa. Geophys Res Lett 35(13):L13,705CrossRefGoogle Scholar
  56. Touchan R, Meko DM, Aloui A (2008b) Precipitation reconstruction for northwestern Tunisia from tree rings. J Arid Environ 72(1887–1896)Google Scholar
  57. Trewartha GT (1981) The Earth’s problem climates, 2nd edn. The University of Wisconsin Press, Madison, 371 ppGoogle Scholar
  58. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213CrossRefGoogle Scholar
  59. Wilson R, Tudhope A, Brohan P, Briffa KR, Osborn TJ, Tett S (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res 111:10,007Google Scholar
  60. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ramzi Touchan
    • 1
    Email author
  • Kevin J. Anchukaitis
    • 2
  • David M. Meko
    • 1
  • Mohamed Sabir
    • 3
  • Said Attalah
    • 4
  • Ali Aloui
    • 5
  1. 1.Laboratory of Tree Ring ResearchThe University of ArizonaTucsonUSA
  2. 2.Lamont Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  3. 3.National School of Forest EngineeringSaleMorocco
  4. 4.Department of AgronomyUniversity of OurglaOuarglaAlgeria
  5. 5.Institute of Sylvo-pastoral of TabarkaTabarkaTunisia

Personalised recommendations