Climate Dynamics

, Volume 36, Issue 7–8, pp 1349–1364

Natural forcing of climate during the last millennium: fingerprint of solar variability

Low frequency solar forcing and NAO
  • D. Swingedouw
  • L. Terray
  • C. Cassou
  • A. Voldoire
  • D. Salas-Mélia
  • J. Servonnat
Article

Abstract

The variability of the climate during the last millennium is partly forced by changes in total solar irradiance (TSI). Nevertheless, the amplitude of these TSI changes is very small so that recent reconstruction data suggest that low frequency variations in the North Atlantic Oscillation (NAO) and in the thermohaline circulation may have amplified, in the North Atlantic sector and mostly in winter, the radiative changes due to TSI variations. In this study we use a state-of-the-art climate model to simulate the last millennium. We find that modelled variations of surface temperature in the Northern Hemisphere are coherent with existing reconstructions. Moreover, in the model, the low frequency variability of this mean hemispheric temperature is found to be correlated at 0.74 with the solar forcing for the period 1001–1860. Then, we focus on the regional climatic fingerprint of solar forcing in winter and find a significant relationship between the low frequency TSI forcing and the NAO with a time lag of more than 40 years for the response of the NAO. Such a lag is larger than the around 20-year lag suggested in other studies. We argue that this lag is due, in the model, to a northward shift of the tropical atmospheric convection in the Pacific Ocean, which is maximum more than four decades after the solar forcing increase. This shift then forces a positive NAO through an atmospheric wave connection related to the jet-stream wave guide. The shift of the tropical convection is due to the persistence of anomalous warm SST forcing the anomalous precipitation, associated with the advection of warm SST by the North Pacific subtropical gyre in a few decades. Finally, we analyse the response of the Atlantic meridional overturning circulation to solar forcing and find that the former is weakened when the latter increases. Changes in wind stress, notably due to the NAO, modify the barotropic streamfunction in the Atlantic 50 years after solar variations. This implies a wind-driven modification of the oceanic circulation in the Atlantic sector in response to changes in solar forcing, in addition to the variations of the thermohaline circulation.

Keywords

Last millennium Natural climate variability Solar forcing North Atlantic Oscillation Thermohaline circulation 

References

  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci 104:3713–3718CrossRefGoogle Scholar
  2. Bard E, Raisbeck G, Yiou F, Jouzel J (2000) Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus B 52:985–992CrossRefGoogle Scholar
  3. Bentsen M, Drange H, Furevik T, Zhou T (2004) Simulated variability of the Atlantic meridional overturning circulation. Clim Dyn 22:701–720CrossRefGoogle Scholar
  4. Berger A (1978) Long-term variation of caloric solar radiation resulting monthly and latitudinally varying volcanic forcing dataset in simulations from the earthGs orbital elements. Quat Res 9:139G167CrossRefGoogle Scholar
  5. Bertrand C, Loutre M, Crucifix M, Berger A (2002) Climate of the last millennium: a sensitivity study. Tellus 54A:221–244CrossRefGoogle Scholar
  6. Blanke B, Arhan M, Speich S, Pailler K (2002) Diagnosing and picturing the north atlantic segment of the global conveyor belt by means of an ocean general circulation model. J Phys Oceanogr 32:1430–1451CrossRefGoogle Scholar
  7. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  8. Bradley RS, Jones PD (1993) “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. Holocene 3:367–376CrossRefGoogle Scholar
  9. Branstator G (2002) Circumglobal teleconnections, the jetstream waveguide, and the North Atlantic Oscillation. J Clim 15:1983–1910CrossRefGoogle Scholar
  10. Brohan P, Kennedy JJ, Harris I, Tett S, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106CrossRefGoogle Scholar
  11. Cassou C, Terray L (2001) Dual influence of Atlantic and Pacific SST anomalies on the North Atlantic/Europe Winter Climate. Geophys Res Lett 28:3195–3198CrossRefGoogle Scholar
  12. Chapelon N, Douville H, Kosuth P, Oki T (2002) Off-line simulation of the Amazon water balance: a sensitivity study with implications for GSWP. Clim Dyn 19:141–154CrossRefGoogle Scholar
  13. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  14. Cubasch U, Voss R, Hegerl GC, Waszkewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean–atmosphere general circulation model. Clim Dyn 33:757–767CrossRefGoogle Scholar
  15. Curry RG, McCartney MS, Joyce TM (1998) Oceanic transport of subpolar climate signals to mid-depth subtropical waters. Nature 391:575–577CrossRefGoogle Scholar
  16. Denton GH, Broecker WS (2009) Wobbly ocean conveyor circulation during the Holocene? Quat Sci Rev 27:1939–1950CrossRefGoogle Scholar
  17. Déqué M et al (1999) ARPEGE version 3, documentation algorithmique et mode dGemploi. Tech. rep., available from CNRM/GMGEC, Météo-France, 42 avenue G. Coriolis, 31057 Toulouse, France (in French)Google Scholar
  18. Deser C, Phillips A (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Clim 22:396–413CrossRefGoogle Scholar
  19. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the Tropics and North Pacific during boreal winter since 1900. J Clim 17:3109–3124Google Scholar
  20. Dickson RR, Lazier JJ, Meincke J, Rhines P, Swift J, (1996) Longterm coordinated changes in the convective activity of the North Atlantic. Prog Oceanogr 38:241–295CrossRefGoogle Scholar
  21. Douville H, Royer J-F, Mahfouf J-F (1995) A new snow parametrization for the Météo-France climate model. Part I: validation in stand-alone experiments. J Clim 12:21–35Google Scholar
  22. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022CrossRefGoogle Scholar
  23. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10:2147–2153CrossRefGoogle Scholar
  24. Eddy J (1976) The Maunder minimum. Science 192:1189–G1202CrossRefGoogle Scholar
  25. Eden C, Willebrand J (2001) Mechanism of interannual to decadal variability of the north atlantic circulation. J Clim 14:2266–2280CrossRefGoogle Scholar
  26. Forster P et al (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 129–234Google Scholar
  27. Foukal P, North G, Wigley T (2004) A stellar view on solar variations and climate. Science 306:68G69CrossRefGoogle Scholar
  28. Frankignoul C, de Coetlogon G, Joyce T, Dong S (2001) Gulf Stream variability and ocean–atmosphere interactions. J Phys Oceanogr 31:3516–3529CrossRefGoogle Scholar
  29. Gent PR, Mc Williams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–155CrossRefGoogle Scholar
  30. Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Dyn 20:327G–339Google Scholar
  31. Goosse H, Lefebvre W, de Montety A, Crespin E, Orsi A (2009) Consistent past half-century trends in the atmosphere, the sea ice and the ocean at high southern latitudes. Clim Dyn. doi:doi10.1007/s00382-008-0500-9
  32. Gregory J et al (2005) A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys Res Let 32Google Scholar
  33. Grieser J, Schönwiese CD (1999) Parameterization of spatio-temporal patterns of volcanic aerosol induced stratospheric optical depth and its climate radiative forcing. Atmosfera 12:111–133Google Scholar
  34. Guemas V, Salas-Mélia D (2008a) Simulation of the Atlantic meridional overturning circulation in an atmosphere–ocean global coupled model. Part I : a mechanism governing the variability of ocean convection in a preindustrial experiment. Clim Dyn 31:29–48CrossRefGoogle Scholar
  35. Guemas V, Salas-Mélia D (2008b) Simulation of the Atlantic meridional overturning circulation in an atmosphere–ocean global coupled model. Part II : a weakening in a climate change experiment—a feedback mechanism. Clim Dyn 30:831–844CrossRefGoogle Scholar
  36. Guiot J, Corona C, ESCARSEL members (2010) Growing season temperature in europe and climate forcings for the last 1400 years. PLoS ONE (submitted)Google Scholar
  37. Hamon M (2007) La circulation de l’océan global décrite par une trajectoire lagrangienne. M.S. thesis, Université de Bretagne Occidentale (in French)Google Scholar
  38. Hegerl G et al (2007) Understanding and attributing climate change. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 663–746Google Scholar
  39. Hu AX, Meehl GA, Washington WM, Dai AG (2004) Response of the Atlantic thermohaline circulation to increased atmospheric CO2 in a coupled model. J Clim 17:4267–4279CrossRefGoogle Scholar
  40. Hunke EC, Dukowicz JK (1997) An elasticGviscousGplastic model for sea ice dynamics. J Phys Oceanogr 27:1849G–1867CrossRefGoogle Scholar
  41. Hunke EC, Lipscomb WH (2002) CICE: the Los Alamos sea ice model, documentation and software UserGs Manual. T-3 Fluid Dynamics Group. Tech rep lacc-98G16 v.3, Los Alamos National LaboratoryGoogle Scholar
  42. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  43. Hurrell JW, Hoerling MP, S PA, Caron J, Yin J (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. J Atmos Sci 60:1504–1521Google Scholar
  44. Huybers P, Curry W (2006) Links between annual, milankovitch and continuum temperature variability. Nature 441:329–332CrossRefGoogle Scholar
  45. Jansen E et al (2007) Palaeoclimate. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 433–498Google Scholar
  46. Jones P, Osborn T, Briffa K (2001) The evolution of climate over the last millennium. Science 292:662–G667CrossRefGoogle Scholar
  47. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921 CrossRefGoogle Scholar
  48. Lamb H (1965) The early medieval warm epoch and its sequel. Palaeogeogr Palaeoclimatol Palaeoecol 1:13–37CrossRefGoogle Scholar
  49. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–G3198CrossRefGoogle Scholar
  50. Lean J, Wang Y, Sheeley N (2002) The effect of increasing solar activity on the sunGs total and open magnetic flux during multiple cycles: Implications for solar forcing of climate. Geophys Res Lett. doi:10.1029/2002GL015880
  51. Levitus S (1982) Climatological atlas of the world ocean. Professional paper, NOAA/GFDLGoogle Scholar
  52. Lund DC, Lynch-Stieglitz J, Curry WB (2006) Gulf Stream density structure and transport during the past millennium. Nature 444:601–604CrossRefGoogle Scholar
  53. Luterbacher J, Xoplaki E, Rickli R, Gyalistras D, Schmutz C, Wanner H (2002b) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  54. Luterbacher J et al (2002a) Extending north atlantic oscillation reconstructions back to 1500. Atmos Sci Lett. doi:10.1006/asle.2001.0044
  55. Madec G, Chartier M, Delecluse P, Crépon M (1991) A three-dimensional numerical study of deep water formation in the Northwestern Mediterranean Sea. J Phys Oceanogr 21:1349G–1371CrossRefGoogle Scholar
  56. Madec G, Delecluse P, Imbard M, L+vy C (1998) OPA version 8. Ocean general circulation model reference manual. Rapp. Int., LODYC, France, p 200Google Scholar
  57. Mahfouf JF, Manzi A, Noilhan J, Giordani H, Déqué M (1995) The land surface scheme ISBA within the Météo-France climate model ARPEGE. Part I. Implementation and preliminary results. J Clim 8:2039–2057CrossRefGoogle Scholar
  58. Mann M, Bradley R, Hughes M (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  59. Mann ME, Zhang ZH, Hughes MK, Bradley RS, Miller SK, Rutherford S, Fenbiao N (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105:13252–13257Google Scholar
  60. Masson V, Champeaux J-L, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16:1261–1282CrossRefGoogle Scholar
  61. Meehl G, Arblaster J, Branstator G, van Loon H (2008) A coupled air–sea response mechanism to solar forcing in the Pacific region. J Clim 21:2883–2897CrossRefGoogle Scholar
  62. Moberg A, Sonechkin DM, Holmgren K, Datsenko NM, Karlen W (2005) Highly variable northern hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433:613–617CrossRefGoogle Scholar
  63. Muscheler R, Joos F, Beer J, Muller SA, Vonmoosc M, Snowballd I (2007) Solar activity during the last 1000 yr inferred from radionuclide records. Quat Sci Rev 26:82–97CrossRefGoogle Scholar
  64. Oki T, Sud YC (1998) Design of total runoff integrating pathways (TRIP). A global river channel network. Earth Interact 2:1–37CrossRefGoogle Scholar
  65. Ottera OH (2008) Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model. Adv Atmos Sci 25:213–226CrossRefGoogle Scholar
  66. Paillard D (2008) From atmosphere, to climate, to Earth system science. Interdiscip Sci Rev 33:25–35CrossRefGoogle Scholar
  67. Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952G–956CrossRefGoogle Scholar
  68. Ramankutty N, Foley J (1999) Estimating historical changes in global land cover: croplands from 1700 to 1992. Global Biogeochem Cycles 13:997–1027CrossRefGoogle Scholar
  69. Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172CrossRefGoogle Scholar
  70. Salas-Mélia D et al (2005) Description and validation of the CNRM-CM3 global coupled model. Tech rep, CNRM technical report 103. URL http://www.cnrm.meteo.fr/scenario2004/paper_cm3.pdf, available from CNRM/GMGEC, 42 ave. G.Coriolis, 31057 Toulouse, France
  71. Schneider B, Latif M, Schmittner A (2007) Evaluation of different methods to assess model projections of the future evolution of the atlantic meridional overturning circulation. J Clim 20:2121–2132CrossRefGoogle Scholar
  72. Schneider EK, Bengtsson L, Hu Z (2003) Forcing of northern hemisphere climate trends. J Atmos Sci 60:1504–1521CrossRefGoogle Scholar
  73. Shindell D, Schmidt G, Miller R, Mann M (2003) Volcanic and solar forcing of climate change during the preindustrial era. J Clim 16:4094–4107CrossRefGoogle Scholar
  74. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder minimum. Science 294:2149–2152CrossRefGoogle Scholar
  75. Sicre MA et al (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 yrs. Earth Planet Sci Lett. doi:10.1016/j.epsl.2008.1001.101
  76. Speer K, Rintoul SR, Sloyan B (2000) The diabatic Deacon cell. J Phys Oceanogr 12:3212–3222CrossRefGoogle Scholar
  77. Stendel M, Mogensen IA, Christensen JH (2006) Influence of various forcings on global climate in historical times using a coupled atmosphere–ocean general circulation model. Clim Dyn 26:1–15CrossRefGoogle Scholar
  78. Thompson DWJ, Wallace JM (1998) The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300CrossRefGoogle Scholar
  79. Thorndike AS, Rothrock DA, Maykut GA, R C (1975) The thickness distribution of sea ice. J Geophys Res 80:4501–4513CrossRefGoogle Scholar
  80. Trenberth K et al (2007) Observations: surface and atmospheric climate change. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp 235–336Google Scholar
  81. Valcke S, Declat D, Redler R, Ritzdorf H, Schoenemeyer T, Vogelsang R (2004) In: Proceedings of the 6th International Meeting, High performance computing for computational science, Vol. 1. Universidad Politecnica de Valencia, Valencia, Spain., the PRISM Coupling and I/O System. VECPAR’04Google Scholar
  82. Walin G (1982) On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus 34:187–195CrossRefGoogle Scholar
  83. Waple AM, Mann ME, Bradley RS (2002) Long-term patterns of solar irradiance forcing in model experiments and proxy based surface temperature reconstructions. Clim Dyn 18:563–578Google Scholar
  84. Wood RA, Keen AB, Mitchell JFB, Gregory JM (1999) Changing spatial structure of the thermohaline circulation in response to atmospheric CO2 forcing in a climate model. Nature 399:572–575CrossRefGoogle Scholar
  85. Zorita E, von Storch H, Gonzalez-Rouco FJ, Cubasch U, Luterbacher JU, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere–ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder minimum. Meteorologische Zeitschrift 13:271–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • D. Swingedouw
    • 1
    • 4
  • L. Terray
    • 1
  • C. Cassou
    • 1
  • A. Voldoire
    • 2
  • D. Salas-Mélia
    • 2
  • J. Servonnat
    • 3
  1. 1.CERFACSToulouseFrance
  2. 2.CNRMToulouseFrance
  3. 3.LSCE/IPSLGif-sur-YvetteFrance
  4. 4.LSCE/IPSLGif-sur-YvetteFrance

Personalised recommendations