Climate Dynamics

, Volume 37, Issue 1–2, pp 133–150 | Cite as

200 years of European temperature variability: insights from and tests of the proxy surrogate reconstruction analog method

  • Jörg FrankeEmail author
  • J. Fidel González-Rouco
  • David Frank
  • Nicholas E. Graham


Spatially resolved climate reconstructions are commonly derived from long instrumental series and proxy data via linear regression based approaches that use the main modes of the climate system. Such reconstructions have been shown to underestimate climate variability and are based upon the assumption that the main modes of climate variability are stationary back in time. Climate models simulate physically consistent climate fields but cannot be taken to represent the real past climate trajectory because of their necessarily simplified scope and chaotic internal variability. Here, we present sensitivity tests of, and a 200-year temperature reconstruction from, the PSR (Proxy Surrogate Reconstruction) method. This method simultaneously capitalizes on the individual strengths of instrumental/proxy data based reconstructions and model simulations by selecting the model states (analogs) that are most similar with proxy/instrumental data available at specific places and specific moments of time. Sensitivity experiments reveal an optimal PSR configuration and indicate that 6,500 simulation years of existing climate models provide a sufficient pool of possible analogs to skillfully reconstruct monthly European temperature fields during the past 200 years. Reconstruction verification based upon only seven instrumental stations indicates potential for extensions back in time using sparse proxy data. Additionally the PSR method allows evaluation of single time series, in this case the homogeneity of instrumental series, by identifying inconsistencies with the reconstructed climate field. We present an updated European temperature reconstruction including newly homogenized instrumental records performed with the computationally efficient PSR method that proves to capture the total variance of the target.


Climate reconstruction Europe Analog method Paleoclimate Proxy data Instrumental data 



This study was funded by the EU project MILLENNIUM (#017008-GOCE) and by the Swiss National Science Foundation (SNSF) through its National Center of Competence in Research on Climate (NCCR Climate). We are thankful to all data-contributors: Johann Jungclaus et al. from the MPI in Hamburg; Simon Tett and Phil Brohan from Hadley Centre, Exeter; Jürg Luterbacher from the University of Gießen and Geert Jan van Oldenborgh from the KNMI (Climate-Explorer: We also very much appreciated discussions with Ed Cook, Anders Moberg, Eduardo Zorita and Jan Esper. Finally we want to thank the anonymous reviewers for their constructive comments and suggestions.


  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Natl Acad Sci 104(10):3713–3718. doi: 10.1073/pnas.0605064103 CrossRefGoogle Scholar
  2. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin JM, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) Histalp–historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27(1):17–46. doi: 10.1002/joc.1377 CrossRefGoogle Scholar
  3. Barnett T, Preisendorfer R (1978) Multifield analog prediction of short-term climate fluctuations using a climate state vector. J Atmos Sci 35(10):1771–1787CrossRefGoogle Scholar
  4. Böhm R, Jones PD, Hiebl J, Frank D, Brunetti M, Maugeri M (2010) The early instrumental bias: a solution for long central European temperature series 1760–2007. Clim Change. doi: 10.1007/s10584-009-9649-4 (in press)
  5. Brohan P, Kennedy J, Harris I, Tett S, Jones P (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos 111(D12):D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  6. Büntgen U, Wilson R, Franke J, Frank D, Esper J (2010) Proxy number and location to reconstruct European climate variability. Clim Res (in press)Google Scholar
  7. Bürger G, Cubasch U (2005) Are multiproxy climate reconstructions robust. Geophys Res Lett 58:227–235Google Scholar
  8. Bürger G, Fast I, Cubasch U (2006) Climate reconstruction by regression-32 variations on a theme. Tellus A 32:L23–71. doi: 10.1029/2005GL024155 Google Scholar
  9. Christiansen B, Schmith T, Thejll P (2009) A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness. J Clim 22(4):951–976CrossRefGoogle Scholar
  10. Collins M, Tett S, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17(1):61–81CrossRefGoogle Scholar
  11. Cook E, D’Arrigo R, Mann M (2002) A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since AD 1400. J Clim 15(13):1754–1764CrossRefGoogle Scholar
  12. Cook E, Woodhouse C, Eakin C (2004) Long-term aridity changes in the western United States. Science 306:1015–1018CrossRefGoogle Scholar
  13. Crespin E, Goosse H, Fichefet T, Mann ME (2009) The 15th century Arctic warming in coupled model simulations with data assimilation. Clim Past 5:389–401CrossRefGoogle Scholar
  14. Cubasch U, von Storch H, Waszkewitz J, Zorita E (1996) Estimates of climate change in Southern Europe derived from dynamical climate model output. Clim Res 7:129–149CrossRefGoogle Scholar
  15. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over western Europe 1880 2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275. doi: 10.1007/s00382-007-0233-1 CrossRefGoogle Scholar
  16. ECMWF (2006) European Centre for Medium-Range Weather Forecasts ERA-40 Re-Analysis data., British Atmospheric Data Centre. June 2009
  17. Esper J, Cook E, Schweingruber F (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253CrossRefGoogle Scholar
  18. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sci Rev 26(25-28):3298–3310CrossRefGoogle Scholar
  19. Frank DC, Esper J, Raible CC, Buentgen U, Trouet V, Stocker B, Joos F (2010) Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463(7280):527–530. doi: 10.1038/nature08769 Google Scholar
  20. Franke J, Paul A, Schulz M (2008) Modeling variations of marine reservoir ages during the last 45,000 years. Clim Past 4:125–136CrossRefGoogle Scholar
  21. Gavin D, Oswald W, Wahl E, Williams J (2003) A statistical approach to evaluating distance metrics and analog assignments for pollen records. Quat Res 60(3):356–367CrossRefGoogle Scholar
  22. González-Rouco J, Zorita E, Cubasch U, von Storch H, Fisher-Bruns I, Valero F (2003) Simulating the climate since 1000 AD with the AOGCM ECHO-G. In: Wilson A (ed) Solar variability as an input to the Earth’s environment, International Solar Cycle Studies (ISCS) Symposium, Noordwijk: ESA Publications Division, Tatranská Lomnica, Slovak Republic, pp 329–338, ISBN 92-9092-845-XGoogle Scholar
  23. González-Rouco JF, Beltrami H, Zorita E, von Storch H (2006) Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys Res Lett 33(1):L01–703. doi: 10.1029/2005GL024693 CrossRefGoogle Scholar
  24. González-Rouco JF, Beltrami H, Zorita E, Stevens MB (2009) Borehole climatology: a discussion based on contributions from climate modeling. Clim Past 5:97–127CrossRefGoogle Scholar
  25. Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Clim Dyn 27(2-3):165–184. doi: 10.1007/s00382-006-0128-6 CrossRefGoogle Scholar
  26. Goosse H, Crespin E, de Montety A, Mann M, Renssen H, Timmermann A (2010) Reconstructing surface temperature changes over the past 600 years using climate model simulations with data assimilation. J Geophys Res Atmos (in press). doi: 10.1029/2009JD012737
  27. Graham NE, Hughes MK, Ammann CM, Cobb KM, Hoerling MP, Kennett DJ, Kennett JP, Rein B, Stott L, Wigand PE, Xu T (2007) Tropical pacific–mid-latitude teleconnections in medieval times. Clim Change 83(1-2):241–285. doi: 10.1007/s10584-007-9239-2 CrossRefGoogle Scholar
  28. Hegerl GC, Crowley TJ, Hyde WT, Frame DJ (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440(7087):1029–1032. doi: 10.1038/nature04679 CrossRefGoogle Scholar
  29. Jansen E, J Overpeck KRB, Duplessy JC, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change, Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  30. Jones P, Mann M (2004) Climate over past millennia. Rev Geophys 42:RG2002CrossRefGoogle Scholar
  31. Jones P, Moberg A (2003) Hemispheric and large-scale surface air temperature variations: an extensive revision and an update to 2001. J Clim 16(2):206–223CrossRefGoogle Scholar
  32. Jones P, Briffa K, Osborn T, Lough J, van Ommen T, Vinther B, Luterbacher J, Wahl E, Zwiers F, Mann M (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. The Holocene 19(1):3–49CrossRefGoogle Scholar
  33. Juckes M, Allen M, Briffa K, Esper J, Hegerl G, Moberg A, Osborn T, Weber S, Zorita E (2007) Millennial temperature reconstruction intercomparison and evaluation. Clim Past 3(4):591–609CrossRefGoogle Scholar
  34. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J, Krivova NA, Vieira LE, Solanki SK, Klocke D, Botzet M, Esch M, Gayler V, Haak H, Raddatz TJ, Roeckner E, Schnur R, Widmann H, Claussen M, Stevens B, Marotzke J (2010) Climate and carbon-cycle variability over the Last Millennium. Proc Natl Acad Sci (submitted)Google Scholar
  35. Krivova N, Balmaceda L, Solanki S (2007) Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron Astrophys 467(1):335–346CrossRefGoogle Scholar
  36. Kruizinga S, Murphy A (1983) Use of an analogue procedure to formulate objective probabilistic temperature forecasts in the Netherlands. Mon Weather Rev 111(11):2244–2254CrossRefGoogle Scholar
  37. Küttel M, Xoplaki E, Gallego D, Luterbacher J, García-Herrera R, Allan R, Barriendos M, Jones P, Wheeler D, Wanner H (2010) The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Clim Dyn (in press). doi: 10.1007/s00382-009-0577-9
  38. Lee TCK, Zwiers FW, Tsao M (2008) Evaluation of proxy-based millennial reconstruction methods. Clim Dyn 31(2-3):263–281. doi: 10.1007/s00382-007-0351-9 CrossRefGoogle Scholar
  39. Lefohn A, Husar J, Husar R (1999) Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990. Atmos Environ 33:3435–3444CrossRefGoogle Scholar
  40. Lorenz E (1969) Studies of atmospheric predictability. Tech. rep., Massachusetts Institute of Technology, project No. 8604Google Scholar
  41. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  42. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303(5663):1499–1503CrossRefGoogle Scholar
  43. Luterbacher J, König SJ, Franke J, van der Schrier G, Della-Marta PM, Jacobeit J, Kttel M, González-Rouco FJ, Zorita E, Xoplaki E, Stssel M, Rutishauser T, Wanner H, Pfister C, Brázdil R, Dobrovolny P, Camuffo D, Bertolin C, Moberg A, Leijonhufvud L, Soderberg J, Allan R, Wilson R, Wheeler D, Barriendos M, Glaser R, Riemann D, Nordli O, Limanwka D, van Engelen A, Zerefos CS (2010) Circulation dynamics and its influence on European and Mediterranean january-april climate over the past half millennium: results and insights from instrumental data, documentary proxy evidence and coupled climate models. Clim Change. doi: 10.1007/s10584-009-9782-0 (in press)
  44. MacFarling Meure C, Etheridge D, Trudinger C (2006) Law Dome CO2CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 33:L14810. doi: 10.1029/2006GL026152 CrossRefGoogle Scholar
  45. Mann M, Rutherford S (2002) Climate reconstruction using ‘Pseudoproxies’. Geophys Res Lett 29(10):1501. doi: 10.1029/2001GL014554 CrossRefGoogle Scholar
  46. Mann M, Bradley R, Hughes M (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392(6678):779–787CrossRefGoogle Scholar
  47. Mann M, Rutherford S, Wahl E, Ammann C (2005) Testing the fidelity of methods used in proxy-based reconstructions of past climate. J Clim 18(20):4097–4107CrossRefGoogle Scholar
  48. Mann M, Zhang Z, Hughes M, Bradley R, Miller S, Rutherford S, Ni F (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci 105(36):13252–13257CrossRefGoogle Scholar
  49. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112(D12):D12109. doi: 10.1029/2006JD008272 CrossRefGoogle Scholar
  50. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326(1256):1256–1260. doi: 10.1126/science.1177303 CrossRefGoogle Scholar
  51. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  52. Moberg A, Bergström H, Krigsman JR (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Change 53:171–212CrossRefGoogle Scholar
  53. Osborn TJ, Briffa KR (2006) The spatial extent of 20th-century warmth in the context of the past 1200 years. Science 311(5762):841–844. doi: 10.1126/science.1120514 CrossRefGoogle Scholar
  54. Parker D, Legg T, Folland C (1992) A new daily central England temperature series, 1772-1991. Int J Climatol 12(4):317–342CrossRefGoogle Scholar
  55. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26(4):387–405CrossRefGoogle Scholar
  56. Peixoto JP, Oort AH (1992) Physics of climate. Springer, New YorkGoogle Scholar
  57. Peterson T, Vose R, Schmoyer R (1998) Global Historical Climatology Network (GHCN) quality control of monthly temperature data. Int J Climatol 18:1169–1179CrossRefGoogle Scholar
  58. Petoukhov V, Claussen M, Berger A, Crucifix M, Eby M, Eliseev A, Fichefet T, Ganopolski A, Goosse H, Kamenkovich I, Mokhov I, Montoya M, Mysak L, Sokolov A, Stone P, Wang Z, Weaver A (2005) EMIC Intercomparison Project (EMIP-CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling. Clim Dyn 25(4):363–385. doi: 10.1007/s00382-005-0042-3 CrossRefGoogle Scholar
  59. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Global Biogeochem Cycles 22(3):GB3018. doi: 10.1029/2007GB003153 CrossRefGoogle Scholar
  60. Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Büntgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schär C, Wanner H (2006) Climate variability-observations, reconstructions, and model simulations for the Atlantic-European and Alpine Region from 1500–2100 AD. Clim Change 79(1–2):9–29. doi: 10.1007/s10584-006-9061-2 CrossRefGoogle Scholar
  61. Riedwyl N, Küttel M, Luterbacher J, Wanner H (2009) Comparison of climate field reconstruction techniques: application to Europe. Clim Dyn 32(2–3):381–395. doi: 10.1007/s00382-008-0395-5 CrossRefGoogle Scholar
  62. Smerdon JE, Kaplan A (2007) Comments on Testing the fidelity of methods used in proxy-based reconstructions of past climate: the role of the standardization interval. J Clim 20(22):5666–5670. doi: 10.1175/2007JCLI1794.1 CrossRefGoogle Scholar
  63. Smerdon JE, Kaplan A, Chang D (2008) On the origin of the standardization sensitivity in RegEM climate field reconstructions. J Clim 21(24):6710–6723. doi: 10.1175/2008JCLI2182.1 CrossRefGoogle Scholar
  64. Stendel M, Mogensen I, Christensen J (2006) Influence of various forcings on global climate in historical times using a coupled atmosphere ocean general circulation model. Clim Dyn 26:1–15. doi: 10.1007/s00382-005-0041-4 CrossRefGoogle Scholar
  65. Tanré D, Geleyn JF, Slingo J (1984) First results of the introduction of an advanced aerosolradiation interaction in ECMWF low resolution global model. In: Gerber HE, Deepak A (eds) Aerosols and their climatic effects. Deepak Publishing, Hampton, VA, pp 133–177Google Scholar
  66. Tett S, Betts R, Crowley T, Gregory J, Johns T, Jones A, Osborn T, Öström E, Roberts D, Woodage M (2007) The impact of natural and anthropogenic forcings on climate and hydrology since 1550. Clim Dyn 28(1):3–34CrossRefGoogle Scholar
  67. Tingley M, Huybers P (2010a) A bayesian algorithm for reconstructing spatially arrayed temperatures. Part 1: development and applications to paleoclimate reconstruction problems. J Clim (in press)Google Scholar
  68. Tingley M, Huybers P (2010b) A bayesian algorithm for reconstructing spatially arrayed temperatures. Part 2: comparison with the regularized expectation-maximization algorithm. J Clim (in press)Google Scholar
  69. Trenberth K (1995) Atmospheric circulation climate changes. Clim Change 31(2):427–453CrossRefGoogle Scholar
  70. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive north Atlantic oscillation mode dominated the medieval climate anomaly. Science 324(5923):78–80. doi: 10.1126/science.1166349 CrossRefGoogle Scholar
  71. van den Dool H (1994) Searching for analogues, how long must we wait? Tellus A 46:314–324CrossRefGoogle Scholar
  72. van der Schrier G, Barkmeijer J (2005) Bjerknes’ hypothesis on the coldness during AD 1790–1820 revisited. Clim Dyn 25(5):537–553. doi: 10.1007/s00382-005-0053-0 CrossRefGoogle Scholar
  73. von Storch H, Zwiers FW (2002) Statistical analysis in climate research. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  74. von Storch H, Cubasch U, González-Rouco J, Jones JM, Voss R, Widmann M, Zorita E (2000) Combining paleoclimatic evidence and GCMs by means of Data Assimilation Through Upscaling and Nudging(DATUN). 11th Symposium on Global Change Studies Long Beach, CAGoogle Scholar
  75. von Storch H, Zorita E, Jones J, Dimitriev Y, Gonzalez-Rouco F, Tett S (2004) Reconstructing past climate from noisy data. Science 306(5696):679–682CrossRefGoogle Scholar
  76. Widmann M, Goosse H, van der Schrier G, Schnur R, Barkmeijer J (2009) Using data assimilation to study extratropical Northern Hemisphere climate over the last millennium. Clim Past Discuss 5:2115–2156CrossRefGoogle Scholar
  77. Xoplaki E, González-Rouco J, Gyalistras D, Luterbacher J, Rickli R, Wanner H (2003) Interannual summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and Mediterranean SSTs 1950–1999. Clim Dyn 20:537–554Google Scholar
  78. Zhang Z, Mann M, Cook E (2004) Alternative methods of proxy-based climate field reconstruction: application to summer drought over the conterminous United States back to AD1700 from tree-ring data. The Holocene 14(4):502–516. doi: 10.1191/0959683604hl727rp CrossRefGoogle Scholar
  79. Zorita E, von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12(8):2474–2489CrossRefGoogle Scholar
  80. Zorita E, Hughes J, Lettemaier D, von Storch H (1995) Stochastic characterization of regional circulation patterns for climate model diagnosis and estimation of local precipitation. J Clim 8(5):1023–1042CrossRefGoogle Scholar
  81. Zorita E, González-Rouco F, Legutke S (2003) Testing the Mann et al. (1998) approach to paleoclimate reconstructions in the context of a 1000-yr control simulation with the ECHO-G coupled climate model. J Clim 16:1378–1390CrossRefGoogle Scholar
  82. Zorita E, González-Rouco F, von Storch H (2007) Comments on “Testing the fidelity of methods used in proxy-based reconstructions of past climate”. J Clim 20(14):3693–3698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jörg Franke
    • 1
    Email author
  • J. Fidel González-Rouco
    • 2
  • David Frank
    • 3
  • Nicholas E. Graham
    • 4
    • 5
  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Universidad ComplutenseMadridSpain
  3. 3.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  4. 4.Hydrologic Research CenterSan DiegoUSA
  5. 5.Scripps Institution of OceanographyLa JollaUSA

Personalised recommendations