Advertisement

Climate Dynamics

, Volume 36, Issue 7–8, pp 1593–1607 | Cite as

An ENSO stability analysis. Part I: results from a hybrid coupled model

  • Seon Tae KimEmail author
  • Fei-Fei Jin
Article

Abstract

In this study, we use the Bjerknes stability (BJ) index as a tool to investigate overall El Niño-Southern Oscillation (ENSO) stability in a hybrid-coupled model (HCM) with various atmosphere and ocean background states. This HCM shows that ENSO growth rates as measured by the BJ index and linear growth rates estimated directly with a time series of the Niño 3.4 indices from the coupled model simulations exhibit similar dependence on background states, coupling strength, and thermodynamic damping intensity. That is, the BJ index and linear growth rates increase with a decrease in the intensity of the background wind, an increase in coupling strength, or a decrease in the intensity of thermodynamic damping, although the BJ index tends to overestimate the growth rate. A detailed analysis of the components of the BJ index formula suggests the importance of model climatological background states and oceanic dynamic parameters in determining ENSO stability. We conclude that the BJ index may serve as a useful tool for qualitatively evaluating the overall ENSO stability in coupled models or in observations without a detailed eigen-analysis that is difficult to perform in models more complex than relatively simple models.

Keywords

ENSO stability HCM BJ index Growth rate 

Notes

Acknowledgments

This research is supported by NSF grants ATM 0652145 and ATM 0650552 and NOAA grants GC01-229. The authors thank Drs. Eric Guilyardi, Axel Timmermann and Shang-Ping Xie and anonymous reviewers for their valuable comments and May Izumi for her careful editing of the manuscript.

References

  1. AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn. doi: 10.1007/s00382-006-0119-7
  2. An S-I (2008) Interannual variations of the tropical ocean instability wave and ENSO J Clim 21:3680–3686Google Scholar
  3. An S-I (2009) A review of interdecadal changes in the nonlinearity of the El Nino-Southern Oscillation. Theor Appl Climatol 92:29–40CrossRefGoogle Scholar
  4. An S-I, Jin F-F (2000) An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 27:1573–2576CrossRefGoogle Scholar
  5. An S-I, Jin F-F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432CrossRefGoogle Scholar
  6. An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  7. An S-I, Jin F-F, Kang IS (1999) The role of zonal advection feedback in phase transition and growth of ENSO in the Cane–Zebiak model. J Meteorol Soc Jpn 77:1151–1160Google Scholar
  8. Barnett TP, Graham N, Pazan S, White W, Latif M, Flügel M (1993) ENSO and ENSO-related predictability. Part I: prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. J Clim 6:1545–1566CrossRefGoogle Scholar
  9. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 46:1687–1712CrossRefGoogle Scholar
  10. Bejarano L, Jin F-F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067CrossRefGoogle Scholar
  11. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5:541–560CrossRefGoogle Scholar
  12. Cane MA, Sarachik ES (1977) Forced baroclinic ocean models, Part II: The linear equatorial bounded case. J Mar Res 35:395–432Google Scholar
  13. Cane MA, Münnich M, Zebiak SF (1990) A study of self-excited oscillations of the tropical ocean-atmosphere system. Part I: linear analysis. J Atmos Sci 47:1562–1577CrossRefGoogle Scholar
  14. Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298CrossRefGoogle Scholar
  15. Clarke AJ, Lebedev A (1996) Long-term changes in equatorial Pacific trade winds. J Clim 9:1020–1029CrossRefGoogle Scholar
  16. Davey MK et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18:403–420CrossRefGoogle Scholar
  17. Fedorov AV, Philander SGH (2000) Is El Niño changing? Sci 288:1997–2002CrossRefGoogle Scholar
  18. Fedorov AV, Philander SGH (2001) A stability analysis of tropical ocean-atmosphere interactions: Bridging measurements and theory for El Niño. J Clim 14:3086–3101CrossRefGoogle Scholar
  19. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340CrossRefGoogle Scholar
  20. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  21. Hirst AC (1986) Unstable and damped equatorial modes in simple coupled ocean-atmosphere models. J Atmos Sci 43:606–630CrossRefGoogle Scholar
  22. Jin F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  23. Jin F-F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847CrossRefGoogle Scholar
  24. Jin F-F, An S-I (1999) Thermocline and zonal advective feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys Res Lett 26:2689–2992CrossRefGoogle Scholar
  25. Jin F-F, Neelin JD (1993) Modes of interannual tropical ocean-atmosphere interaction—a unified view part I: numerical results. J Atmos Sci 50:3477–3502CrossRefGoogle Scholar
  26. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index of ENSO. Geophys Res Lett 33:L23708. doi: 10.1029/2006GL027221 CrossRefGoogle Scholar
  27. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  28. Legler DM, O’Brien JJ (1985) Atlas of tropical Pacific wind-stress climatology: 1971–1980. Florida State University, Tallahassee, p 187Google Scholar
  29. Levitus S (1982) Climatological atlas of the world ocean. NOAA Prof. Pap. 13. US Government Printing Office, Washington, DC, p 173Google Scholar
  30. Levitus S, Burgett R, Boyer T (1994) World Ocean Atlas 1994 Volume 3: Salinity. NOAA Atlas NESDIS 3. US Department of Commerce, Washington, DC, p 113Google Scholar
  31. MacMynowski DG, Tziperman E (2008) Factors affecting ENSO’s period. J Atmos Sci 65:1570–1586CrossRefGoogle Scholar
  32. Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027CrossRefGoogle Scholar
  33. Münnich M, Cane MA, Zebiak SE (1991) A study of self-excited oscillations of the tropical ocean–atmosphere system. Part II: nonlinear cases. J Atmos Sci 48:1238–1248CrossRefGoogle Scholar
  34. Neelin JD (1990) A hybrid coupled general circulation model for El Niño studies. J Atmos Sci 47:674–693CrossRefGoogle Scholar
  35. Neelin JD, Dijkstra HA (1995) Ocean-atmosphere interaction and the tropical climatology. Part I: the dangers of flux correction. J Clim 8:1325–1342CrossRefGoogle Scholar
  36. Otto-Bliesner BL, Brady EC, Shin S-I, Liu Z, Shields C (2003) Modeling El Niño and its tropical teleconnections during the last glacial-interglacial cycle. Geophys Res Lett 30:L2198. doi: 10.1029/2003GL018553 CrossRefGoogle Scholar
  37. Pacanowski RC, Griffies SM (1998) MOM 3.0 Manual. NOAA/Geophysical fluid dynamics laboratory, 668 ppGoogle Scholar
  38. Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of the tropical oceans. J Phys Oceanogr 11:1443–1451CrossRefGoogle Scholar
  39. Philander SGH (1981) The response of equatorial oceans to a relaxation of the trade winds. J Phys Oceanogr 11:176–189CrossRefGoogle Scholar
  40. Philander SGH, Pacanowski RC (1986) A model of the seasonal cycle in the tropical Atlantic Ocean. J Geophys Res 91:14192–14206Google Scholar
  41. Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air-sea interaction in the tropics. J Atmos Sci 41:604–613CrossRefGoogle Scholar
  42. Smith TM, Reynolds RW (2003) Extended reconstruction of global sea surface temperatures based on COADS data (1854–1997). J Clim 16:1495–1510CrossRefGoogle Scholar
  43. Syu H-H, Neelin JD, Gutzler D (1995) Seasonal and interannual variability in a hybrid coupled GCM. J Clim 8:2121–2143CrossRefGoogle Scholar
  44. Tang Y (2002) Hybrid coupled models of the tropical Pacific: I interanuual variability. Clim Dyn 19:331–342. doi: 10.1007/s00382-002-0230-3 CrossRefGoogle Scholar
  45. Timmermann A (2001) Changes of ENSO stability due to greenhouse warming. Geophys Res Lett 28:2061–2064CrossRefGoogle Scholar
  46. Timmermann A, Justino F, Jin F-F, Krebs U, Goose H (2004) Surface temperature control in the North and tropical Pacific during the last glacial maximum. Clim Dyn 23:353–370. doi: 10.1007/s00382-004-0434-9 CrossRefGoogle Scholar
  47. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340CrossRefGoogle Scholar
  48. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76CrossRefGoogle Scholar
  49. Zebiak SE, Cane MA (1987) A model El Niño-southern oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of MeteorologyUniversity of Hawai’i at ManoaHonoluluUSA
  2. 2.Department of Earth System ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations