Climate Dynamics

, Volume 37, Issue 1–2, pp 35–51 | Cite as

Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries

  • R. Neukom
  • J. Luterbacher
  • R. Villalba
  • M. Küttel
  • D. Frank
  • P. D. Jones
  • M. Grosjean
  • H. Wanner
  • J.-C. Aravena
  • D. E. Black
  • D. A. Christie
  • R. D’Arrigo
  • A. Lara
  • M. Morales
  • C. Soliz-Gamboa
  • A. Srur
  • R. Urrutia
  • L. von Gunten
Article

Abstract

We statistically reconstruct austral summer (winter) surface air temperature fields back to ad 900 (1706) using 22 (20) annually resolved predictors from natural and human archives from southern South America (SSA). This represents the first regional-scale climate field reconstruction for parts of the Southern Hemisphere at this high temporal resolution. We apply three different reconstruction techniques: multivariate principal component regression, composite plus scaling, and regularized expectation maximization. There is generally good agreement between the results of the three methods on interannual and decadal timescales. The field reconstructions allow us to describe differences and similarities in the temperature evolution of different sub-regions of SSA. The reconstructed SSA mean summer temperatures between 900 and 1350 are mostly above the 1901–1995 climatology. After 1350, we reconstruct a sharp transition to colder conditions, which last until approximately 1700. The summers in the eighteenth century are relatively warm with a subsequent cold relapse peaking around 1850. In the twentieth century, summer temperatures reach conditions similar to earlier warm periods. The winter temperatures in the eighteenth and nineteenth centuries were mostly below the twentieth century average. The uncertainties of our reconstructions are generally largest in the eastern lowlands of SSA, where the coverage with proxy data is poorest. Verifications with independent summer temperature proxies and instrumental measurements suggest that the interannual and multi-decadal variations of SSA temperatures are well captured by our reconstructions. This new dataset can be used for data/model comparison and data assimilation as well as for detection and attribution studies at sub-continental scales.

Keywords

Climate change Climate field reconstructions Temperature South America 

Supplementary material

382_2010_793_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (PDF 1674 kb)

References

  1. Aravena JC, Lara A, Wolodarsky-Franke A, Villalba R, Cuq E (2002) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forests at the upper tree line of southern Chilean Patagonia. Revista Chilena De Historia Natural 75:361–376Google Scholar
  2. Black DE, Abahazi MA, Thunell RC, Kaplan A, Tappa EJ, Peterson LC (2007) An 8-century tropical Atlantic SST record from the Cariaco Basin: Baseline variability, twentieth-century warming, and Atlantic hurricane frequency. Paleoceanography 22: PA4204Google Scholar
  3. Boninsegna JA, Keegan J, Jacoby GC, D’Arrigo R, Holmes RL (1989) Dendrochronological studies in Tierra del Fuego, Argentina. Quat South Am 7:315–326Google Scholar
  4. Boninsegna JA et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogeogr Palaeoclimatol Palaeoecol 281:210–228CrossRefGoogle Scholar
  5. Bradley RS, Hughes MK, Diaz HF (2003) Climate in Medieval time. Science 302:404–405CrossRefGoogle Scholar
  6. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density data around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene 12:737–757CrossRefGoogle Scholar
  7. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos. 111: 21 pGoogle Scholar
  8. Busalacchi AJ (2004) The role of the Southern Ocean in global processes: an earth system science approach. Antarct Sci 16:363–368CrossRefGoogle Scholar
  9. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of 2 techniques. Int J Climatol 14:379–402CrossRefGoogle Scholar
  10. Cook ER, Palmer JG, D’Arrigo RD (2002) Evidence for a ‘Medieval Warm Period’ in a 1, 100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys Res Lett 29:1667CrossRefGoogle Scholar
  11. Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306:1015–1018CrossRefGoogle Scholar
  12. D’Arrigo R et al (2006) Monsoon drought over Java, Indonesia, during the past two centuries. Geophys Res Lett 33:L04709CrossRefGoogle Scholar
  13. Dettinger MD, Battisti DS, Garreaud RD, McCabe GJ, Bitz CM (2001) Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. In: Markgraf V (ed) Interhemispheric climate linkages. Cambridge University Press, Cambridge, pp 1–16CrossRefGoogle Scholar
  14. Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea-surface temperature since 1600-AD—the delta-O-18 record of climate variability in Galapagos corals. Paleoceanography 9:291–315CrossRefGoogle Scholar
  15. Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32:L07711CrossRefGoogle Scholar
  16. Frank D, Esper J, Cook ER (2007) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34:L16709CrossRefGoogle Scholar
  17. García-Herrera R, Konnen GP, Wheeler DA, Prieto MR, Jones PD, Koek FB (2005) CLIWOC: A climatological database for the world’s oceans 1750–1854. Clim Change 73:1–12CrossRefGoogle Scholar
  18. García-Herrera R et al (2008) A chronology of El Niño events from primary documentary sources in northern Peru. J Clim 21:1948–1962CrossRefGoogle Scholar
  19. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12:2113–2123CrossRefGoogle Scholar
  20. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281:180–195CrossRefGoogle Scholar
  21. Jansen E et al (2007) Palaeoclimate, in Climate Change 2007: the physical science basis. In: Solomon S et al (ed) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  22. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control-run temperatures. Holocene 8:455–471CrossRefGoogle Scholar
  23. Jones PD et al (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19:3–49CrossRefGoogle Scholar
  24. Koch J, Kilian R (2005) ‘Little Ice Age’ glacier fluctuations, Gran Campo Nevado, southernmost Chile. Holocene 15:20–28CrossRefGoogle Scholar
  25. Kuhnert H et al (1999) A 200-year coral stable oxygen isotope record from a high-latitude reef off western Australia. Coral Reefs 18:1–12CrossRefGoogle Scholar
  26. Küttel M, Luterbacher J, Zorita E, Xoplaki E, Riedwyl N, Wanner H (2007) Testing a European winter surface temperature reconstruction in a surrogate climate. Geophys Res Lett 34:L07710CrossRefGoogle Scholar
  27. Küttel M et al (2009) The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750. Clim Dyn. doi:10.1007/s00382-00009-00577-00389
  28. Lamarche VC, Holmes RL, Dunwiddie PW, Drew LG (1979) Tree-ring chronologies of the southern hemisphere: vol 1: Argentina. Chronology Series V, Laboratory of Tree-Ring Research. University of Arizona, TucsonGoogle Scholar
  29. Lara A, Villalba R (1993) A 3620-year temperature record from Fitzroya-Cupressoides tree rings in Southern South-America. Science 260:1104–1106CrossRefGoogle Scholar
  30. Lara A, Aravena JC, Villalba R, Wolodarsky-Franke A, Luckman B, Wilson R (2001) Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the central Andes of Chile. Can J Forest Res 31:925–936Google Scholar
  31. Lara A, Villalba R, Wolodarsky-Franke A, Aravena JC, Luckman BH, Cuq E (2005) Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 degrees 40 ‘-55 degrees S) in the Chilean Andes. J Biogeogr 32:879–893CrossRefGoogle Scholar
  32. Lara A, Villalba R, Urrutia R (2008) A 400-year tree-ring record of the Puelo River summer-fall streamflow in the Valdivian Rainforest eco-region, Chile. Clim Change 86:331–356CrossRefGoogle Scholar
  33. Linsley BK, Wellington GM, Schrag DP (2000) Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science 290:1145–1148CrossRefGoogle Scholar
  34. Ljungqvist FC (2009) Temperature Proxy Records covering the last two Millennia: a tabular and visual Overview. Geografiska Annaler: Ser A, Phys Geogr 91:11–29CrossRefGoogle Scholar
  35. Luckman B, Villalba R (2001) Assessing the synchronicity of glacier fluctuations in the western Cordillera of the Americas during the last millennium. In: Markgraf V (ed) Inter-hemispheric climate linkages. Academic Press, San Diego, pp 119–140CrossRefGoogle Scholar
  36. Luterbacher J et al (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  37. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  38. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704CrossRefGoogle Scholar
  39. Mann ME, Jones PD (2003) Global surface temperatures over the past two millennia. Geophys Res Lett 30:1820CrossRefGoogle Scholar
  40. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  41. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 112:D12109CrossRefGoogle Scholar
  42. Mann ME, Zhang ZH, Hughes MK, Bradley RS, Miller SK, Rutherford S, Ni FB (2008) Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc Natl Acad Sci USA 105:13252–13257CrossRefGoogle Scholar
  43. Mann ME et al (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260CrossRefGoogle Scholar
  44. Masiokas MH, Luckman BH, Villalba R, Delgado S, Skvarca P, Ripalta A (2009) Little Ice Age fluctuations of small glaciers in the Monte Fitz Roy and Lago del Desierto areas, south Patagonian Andes, Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 281:351–362CrossRefGoogle Scholar
  45. McCulloch M, Fallon S, Wyndham T, Hendy E, Lough J, Barnes D (2003) Coral record of increased sediment flux to the inner Great Barrier Reef since European settlement. Nature 421:727–730CrossRefGoogle Scholar
  46. Meyer I, Wagner S (2008a) The Little Ice Age in southern South America: proxy and model based evidence. In: Vimeux F et al (eds) Past climate variability in South America and surrounding regions from the last glacial maximum to the Holocene, pp 395–412. doi:10.1007/978-90-481-2672-9
  47. Meyer I, Wagner S (2008b) The Little Ice Age in southern Patagonia-comparison between paleo-ecological reconstructions and downscaled model output of a GCM simulation. PAGES News 16(2):12–13 Google Scholar
  48. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  49. Morales MS, Villalba R, Grau HR, Paolini L (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85:3080–3089CrossRefGoogle Scholar
  50. Neukom R et al (2009) An extended network of documentary data from South America and its potential for quantitative precipitation reconstructions back to the 16th century. Geophys Res Lett 36:L12703CrossRefGoogle Scholar
  51. Neukom R et al (2010) Multi-centennial summer and winter precipitation variability in southern South America. Geophys Res Lett (revised)Google Scholar
  52. Newman L, Wanner H, Kiefer T (2009) Towards a global synthesis of the climate of the last two millennia. PAGES news 17:130–131Google Scholar
  53. Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. Bull Am Meteorol Soc 78:2837–2849CrossRefGoogle Scholar
  54. Prieto MDR, García Herrera R (2009) Documentary sources from South America: Potential for climate reconstruction. Palaeogeogr Palaeoclimatol Palaeoecol 281:196–209CrossRefGoogle Scholar
  55. Prieto MR, Herrera R, Castrillejo T, Dussel P (2001a) Variaciones climáticas recientes y disponibilidad hídrica en los Andes Centrales Argentino–Chilenos (1885–1996). El uso de datos periodísticos para la reconstitución del clima. Meteorológica 25:27–43Google Scholar
  56. Prieto MR, Herrera R, Dussel P, Gimeno L, Ribera P, Garcia R, Hernandez E (2001b) Interannual oscillations and trend of snow occurrence in the Andes region since 1885. Aust Meteorol Mag 50:164–168Google Scholar
  57. Quinn WH, Neal VT (1992) The historical record of El Niño events. In: Bradley R, Jones PD (eds) Climate since A.D. 1500. Routledge, London, pp 623–648Google Scholar
  58. Rabatel A, Francou B, Jomelli V, Naveau P, Grancher D (2008) A chronology of the Little Ice Age in the tropical Andes of Bolivia (16 degrees S) and its implications for climate reconstruction. Quat Res 70:198–212CrossRefGoogle Scholar
  59. Riedwyl N, Luterbacher J, Wanner H (2008) An ensemble of European summer, winter temperature reconstructions back to 1500. Geophys Res Lett 35:L20707CrossRefGoogle Scholar
  60. Riedwyl N, Küttel M, Luterbacher J, Wanner H (2009) Comparison of climate field reconstruction techniques: application to Europe. Clim Dyn 32:381–395CrossRefGoogle Scholar
  61. Röthlisberger F (1986) 10000 Jahre Gletschergeschichte der Erde, Verlag Sauerländer, AarauGoogle Scholar
  62. Rutherford S, Mann ME, Osborn TJ, Bradley RS, Briffa KR, Hughes MK, Jones PD (2005) Proxy-based Northern Hemisphere surface temperature reconstructions: sensitivity to method, predictor network, target season, and target domain. J Clim 18:2308–2329CrossRefGoogle Scholar
  63. Schaefer JM et al (2009) High-frequency holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324:622–625CrossRefGoogle Scholar
  64. Scherrer SC, Appenzeller C (2006) Swiss Alpine snow pack variability: major patterns and links to local climate and large-scale flow. Clim Res 32:187–199CrossRefGoogle Scholar
  65. Schmelter A (2000) Climatic response and growth-trends of Nothofagus pumilio along altitudinal gradients from arid to humid sites in northern Patagonia—a progress report. In: Roig F (ed) Dendrochronología en América Latina. Editorial Nacional de Cuyo, Mendoza, pp 193–215Google Scholar
  66. Schneider T (2001) Analysis of incomplete climate data: Estimation of mean values and covariance matrices and imputation of missing values. J Clim 14:853–871CrossRefGoogle Scholar
  67. Solíz C, Villalba R, Argollo J, Morales MS, Christie DA, Moya J, Pacajes J (2009) Spatio-temporal variations in Polylepis tarapacana radial growth across the Bolivian Altiplano during the 20th century. Palaeogeogr Palaeoclimatol Palaeoecol 281:296–308CrossRefGoogle Scholar
  68. Srur AM, Villalba R, Villagra PE, Hertel D (2008) Influences of climatic and CO2 concentration changes on radial growth of Nothofagus pumilio in Patagonia. Revista Chilena De Historia Natural 81:239–256CrossRefGoogle Scholar
  69. Stahle DW et al (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. Bull Am Meteorol Soc 79:2137–2152CrossRefGoogle Scholar
  70. Stenni B, Proposito M, Gragnani R, Flora O, Jouzel J, Falourd S, Frezzotti M (2002) Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica). J Geophys Res 107:4076CrossRefGoogle Scholar
  71. Stine S (1994) Extreme and persistent drought in California and Patagonia during medieval time. Nature 369:546–549CrossRefGoogle Scholar
  72. Szeicz JM, Lara A, Díaz S, Aravena JC (2000) Dendrochronological studies of Pilgerodendron uviferum in southern South America. In: Roig F (ed) Dendrochronología en América Latina. Editorial Nacional de Cuyo, Mendoza, pp 245–270Google Scholar
  73. Taulis E (1934) De la distribution des pluies au Chili. Materiaux pour l’étude des calamités 33:3–20Google Scholar
  74. Thompson LG, Mosley-Thompson E, Henderson KA (2000) Ice-core palaeoclimate records in tropical South America since the Last Glacial Maximum. J Quat Sci 15:377–394CrossRefGoogle Scholar
  75. Thompson LG et al (2006) Abrupt tropical climate change: Past and present. Proc Natl Acad Sci USA 103:10536–10543CrossRefGoogle Scholar
  76. Van Ommen T. D., Morgan V., Curran M. A. J. (2004), Deglacial and Holocene changes in accumulation at Law Dome, East Antarctica, in Annals of Glaciology, vol 39, 2005, edited, Int Glaciological Soc, Cambridge, pp 359–365Google Scholar
  77. Vargas WM, Naumann G (2008) Impacts of climatic change and low frequency variability in reference series on daily maximum and minimum temperature in southern South America. Reg Environ Chang 8:45–57CrossRefGoogle Scholar
  78. Villalba R (1990) Climatic fluctuations in Northern Patagonia during the last 1000 years as inferred from tree-ring records. Quat Res 34:346–360CrossRefGoogle Scholar
  79. Villalba R (1994) Tree-ring and glacial evidence for the medieval warm epoch and the little ice-age in southern South-America. Clim Change 26:183–197CrossRefGoogle Scholar
  80. Villalba R, Leiva JC, Rubulls S, Suarez J, Lenzano L (1990) Climate, tree-ring, and glacial fluctuations in the Rio Frias Valley, Rio-Negro, Argentina. Arct Alp Res 22:215–232CrossRefGoogle Scholar
  81. Villalba R, Holmes RL, Boninsegna JA (1992) Spatial patterns of climate and tree growth variations in subtropical Northwestern Argentina. J Biogeogr 19:631–649CrossRefGoogle Scholar
  82. Villalba R, Boninsegna JA, Veblen TT, Schmelter A, Rubulis S (1997a) Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia. Clim Change 36:425–454CrossRefGoogle Scholar
  83. Villalba R, Cook ER, Darrigo RD, Jacoby GC, Jones PD, Salinger MJ, Palmer J (1997b) Sea-level pressure variability around Antarctica since AD 1750 inferred from subantarctic tree-ring records. Clim Dyn 13:375–390CrossRefGoogle Scholar
  84. Villalba R et al (2003) Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim Change 59:177–232CrossRefGoogle Scholar
  85. Villalba R, Grosjean M, Kiefer T (2009) Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): state of the art and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 281:175–179CrossRefGoogle Scholar
  86. Vimeux F, Ginot P, Schwikowski M, Vuille M, Hoffmann G, Thompson LG, Schotterer U (2009) Climate variability during the last 1000 years inferred from Andean ice cores: a review of methodology and recent results. Palaeogeogr Palaeoclimatol Palaeoecol 281:229–241CrossRefGoogle Scholar
  87. von Gunten L, Grosjean M, Rein B, Urrutia R, Appleby P (2009) A quantitative high-resolution summer temperature reconstruction based on sedimentary pigments from Laguna Aculeo, Central Chile, back to AD 850. Holocene 19:873–881CrossRefGoogle Scholar
  88. von Storch H, Zorita E, Jones JM, Dimitriev Y, Gonzalez-Rouco F, Tett SFB (2004) Reconstructing past climate from noisy data. Science 306:679–682CrossRefGoogle Scholar
  89. von Storch H, Zorita E, Gonzalez-Rouco F (2009) Assessment of three temperature reconstruction methods in the virtual reality of a climate simulation. Int J Earth Sci 98:67–82CrossRefGoogle Scholar
  90. Wanner H et al (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828CrossRefGoogle Scholar
  91. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • R. Neukom
    • 1
    • 2
  • J. Luterbacher
    • 3
  • R. Villalba
    • 4
  • M. Küttel
    • 1
    • 2
    • 5
  • D. Frank
    • 6
  • P. D. Jones
    • 7
  • M. Grosjean
    • 1
    • 2
  • H. Wanner
    • 1
    • 2
  • J.-C. Aravena
    • 8
  • D. E. Black
    • 9
  • D. A. Christie
    • 10
  • R. D’Arrigo
    • 11
  • A. Lara
    • 10
    • 12
  • M. Morales
    • 4
  • C. Soliz-Gamboa
    • 13
  • A. Srur
    • 4
  • R. Urrutia
    • 10
  • L. von Gunten
    • 1
    • 2
    • 14
  1. 1.Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
  2. 2.Institute of Geography, Climatology and MeteorologyUniversity of BernBernSwitzerland
  3. 3.Department of Geography; Climatology, Climate Dynamics and Climate ChangeJustus Liebig University of GiessenGiessenGermany
  4. 4.Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA)CONICETMendozaArgentina
  5. 5.Department of Earth and Space SciencesUniversity of WashingtonSeattleUSA
  6. 6.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  7. 7.Climatic Research Unit, School of Environmental SciencesUniversity of East AngliaNorwichUK
  8. 8.Centro de Estudios Cuaternarios de Fuego Patagonia y Antártica (CEQUA)Punta ArenasChile
  9. 9.School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookUSA
  10. 10.Laboratorio de Dendrocronología, Facultad de Ciencias Forestales y Recursos NaturalesUniversidad Austral de Chile ValdiviaValdiviaChile
  11. 11.Tree-Ring Laboratory, Lamont-Doherty Earth ObservatoryEarth Institute at Columbia UniversityPalisadesUSA
  12. 12.Núcleo Científico Milenio FORECOS, Fundación FORECOSValdiviaChile
  13. 13.Section of Ecology and Biodiversity, Faculty of Science, Institute of Environmental BiologyUtrecht UniversityUtrechtThe Netherlands
  14. 14.Department of Geosciences, Climate System Research CenterUniversity of MassachusettsAmherstUSA

Personalised recommendations