Advertisement

Climate Dynamics

, Volume 35, Issue 2–3, pp 285–297 | Cite as

Toward the snowball earth deglaciation…

  • Guillaume Le HirEmail author
  • Yannick Donnadieu
  • Gerhard Krinner
  • Gilles Ramstein
Article

Abstract

The current state of knowledge suggests that the Neoproterozoic snowball Earth is far from deglaciation even at 0.2 bars of CO2. Since understanding the termination of the fully ice-covered state is essential to sustain, or not, the snowball Earth theory, we used an Atmospheric General Climate Model (AGCM) to explore some key factors which could induce deglaciation. After testing the models’ sensitivity to their parameterizations of clouds, CO2 and snow, we investigated the warming effect caused by a dusty surface, associated with ash release during a mega-volcanic eruption. We found that the snow aging process, its dirtiness and the ash deposition on the snow-free ice are key factors for deglaciation. Our modelling study suggests that, under a CO2 enriched atmosphere, a dusty snowball Earth could reach the deglaciation threshold.

Keywords

Snowball earth Albedo Snow Deglaciation Modelling 

Notes

Acknowledgments

The authors thank the two reviewers, R. Pierrehumbert for his constructive review and comments on the snowball Earth climate, and S. Warren for his very detailed and interesting review, notably his helpful comments concerning interactions between sea-ice albedo and ash particles deposition. J.L Dufresne is thanked for discussion of an earlier version of the manuscript. This research was supported by INSU, this work being a contribution to the ANR project Accro-Earth. We used computer resources at CCRT/CEA. This is IPGP contribution no. 2587.

References

  1. Bodiselitsch B, Koeberl C, Master S, Reimold WU (2005) Estimating duration and intensity of Neoproterozoic snowball glaciations from Ir anomalies. Science 308:239–242CrossRefGoogle Scholar
  2. Bonnel BF, Fouquart Y (1980) Computations of solar heating of the earth’s atmosphere: a new parameterization. Contrib Atmos Phys 53:35–62Google Scholar
  3. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection: evaluation using TOGA COARE data. J Atmos Sci 58:3158–3183CrossRefGoogle Scholar
  4. Briegleb BP (1992) Delta-Eddington approximation for solar-radiation in the NCAR Community Climate Model. J Geophys Res Atmos 97:7603–7612Google Scholar
  5. Caldeira K, Kasting JF (1992) Susceptibility of the early earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359:226–228CrossRefGoogle Scholar
  6. Chalita S, Letreut H (1994) The Albedo of Temperate And Boreal Forest and the Northern-Hemisphere Climate—a sensitivity experiment using the Lmd-Gcm. Clim Dyn 10:231–240CrossRefGoogle Scholar
  7. Damon PE, Jirikowic JL (1992) The sun as a low-frequency harmonic-oscillator. Radiocarbon 34:199–205Google Scholar
  8. Donnadieu Y, Ramstein G, Fluteau F, Besse J, Meert J (2002) Is high obliquity a plausible cause for Neoproterozoic glaciations? Geophys Res Lett 29. doi: 10.1029/2002GL015902
  9. Donnadieu Y, Fluteau F, Ramstein G, Ritz C, Besse J (2003) Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: an improved understanding with numerical modeling. Earth Planet Sci Lett 208:101–112CrossRefGoogle Scholar
  10. Donnadieu Y, Godderis Y, Ramstein G, Nedelec A, Meert J (2004) A ‘snowball Earth’ climate triggered by continental break-up through changes in runoff. Nature 428:303–306CrossRefGoogle Scholar
  11. Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56(11):1766–1782CrossRefGoogle Scholar
  12. Fetterer F, Untersteiner N (1998) Observations of melt ponds on Arctic sea ice. J Geophys Res 103(C11):24:821–824. doi: 10.1029/98JC02034 Google Scholar
  13. Fiacco RJ, Thoardason T, Germani MS, Self S, Palais JM, Whitlow S, Grootes PM (1994) Atmospheric aerosol loading and transport due to the 1883–1884 Laki eruption in Iceland, interpreted form ash particles and acidity in the GISP2 ice core. Quat Res 42(3):231–240CrossRefGoogle Scholar
  14. Godderis Y, Donnadieu Y, Nedelec A, Dupre B, Dessert C, Grard A, Ramstein G, Francois LM (2003) The Sturtian ‘snowball’ glaciation: fire and ice. Earth Planet Sci Lett 211:1–12CrossRefGoogle Scholar
  15. Goodman JC (2006) Through thick and thin: marine and meteoric ice in a “snowball earth” climate. Geophys Res Lett 33:L16701. doi: 10.1029/2006GL026840 CrossRefGoogle Scholar
  16. Goodman JC, Pierrehumbert RT (2003) Glacial flow of floating marine ice in ‘‘snowball earth’’. J Geophys Res Oceans 108. doi: 10.1029/2002JC001471
  17. Gough DO (1981) Solar interior structure and luminosity variations. Solar Phys 74:21–34CrossRefGoogle Scholar
  18. Hack JJ, Boville BA, Briegleb BP, Kiehl JT, Rasch PJ, Williamson DL (1993). Description of the NCAR Community Climate Model (CCM2). NCAR Technical Note NCAR/TN-382+STRGoogle Scholar
  19. Heymsfield AJ, Platt CMR (1984) A parameterization of the particle-size spectrum of ice clouds in terms of the ambient-temperature and the ice water-content. J Atmos Sci 41:846–855CrossRefGoogle Scholar
  20. Hoffman PF, Schrag DP (2002) The snowball earth hypothesis: testing the limits of global change. Terra Nova 14:129–155CrossRefGoogle Scholar
  21. Hoffman PF, Kaufman AJ, Halverson GP, Schrag DP (1998) A Neoproterozoic snowball earth. Science 281:1342–1346CrossRefGoogle Scholar
  22. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  23. Hyde WT, Crowley TJ, Baum SK, Peltier WR (2000) Neoproterozoic ‘snowball earth’ simulations with a coupled climate/ice-sheet model. Nature 405:425–429CrossRefGoogle Scholar
  24. Iacobellis SF, Somerville RCJ (2000) Implications of microphysics for cloud-radiation parameterizations: lessons from TOGA COARE. J Atmos Sci 57:161–183CrossRefGoogle Scholar
  25. Kendall B, Creaser RA (2006) Re-Os systematics of the Proterozoic Velkerri and Wollogorang black shales, McArthur basin, Northern Australia. Geochim Cosmochim Acta 70:A314CrossRefGoogle Scholar
  26. Kennedy M, Mrofka D, von der Borch C (2008) Snowball earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453:642–645CrossRefGoogle Scholar
  27. Khodri M, Leclainche Y, Ramstein G, Braconnot P, Marti O, Cortijo E (2001) Simulating the amplification of orbital forcing by ocean feedbacks in the last glaciation. Nature 410:570–574CrossRefGoogle Scholar
  28. Kiehl JT, Dickinson RE (1987) A study of the radiative effects of enhanced atmospheric CO2 and CH4 on early earth surface temperature. J Geophys Res 92:2991–2998CrossRefGoogle Scholar
  29. Kiehl JT, Trenberth KE (1997) Earth’s annual global mean energy budget. Bull Am Meteorol Soc 78:197–208CrossRefGoogle Scholar
  30. Kirschvink JL (1992) Late proterozoic low-latitude glaciation: the snowball earth. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, Cambridge, pp 51–52Google Scholar
  31. Krinner G, A Rinke et al (2009) Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate. Clim Dyn. doi: 10.1007/s00382-009-0587-7
  32. Krinner G, Boucher O, Balkanski Y (2006) Ice-free glacial northern Asia due to dust deposition on snow. Clim Dyn 27:613–625CrossRefGoogle Scholar
  33. Le Hir G, Ramstein G, Donnadieu Y, Pierrehumbert RT (2007) Investigating plausible mechanisms to trigger a deglaciation from a hard snowball earth. Comptes Rendus Geosci 339:274–287CrossRefGoogle Scholar
  34. Le Hir G, Ramstein G, Donnadieu Y, Godderis Y (2008) Scenario for the evolution of atmospheric pCO2 during a snowball earth. Geology 36:47–50CrossRefGoogle Scholar
  35. Lewis JP, Weaver AJ, Eby M (2006) Deglaciating the snowball Earth: sensitivity to surface albedo. Geophys Res Lett 33Google Scholar
  36. Marshall S, Oglesby RJ (1994) An improved snow hydrology for gcms.1: snow cover fraction, albedo, grain-size, and age. Clim Dyn 10:21–37Google Scholar
  37. Maslin M, Owen M, Day S, Long D (2004) Linking continental-slope failures and climate change: testing the clathrate gun hypothesis: Geology 32:53–56CrossRefGoogle Scholar
  38. Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on earth. Bull Volcanol 66:735–748CrossRefGoogle Scholar
  39. McKay CP (2000) Thickness of tropical ice and photosynthesis on a snowball earth. Geophys Res Lett 27:2153–2156CrossRefGoogle Scholar
  40. Morcrette JJSL, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parameterizations. Contrib Atmos Phys 59:455–469Google Scholar
  41. Ninkovich D, Shackleton NJ et al (1978) K–Ar age of late pleistocene eruption of Toba, North Sumatra. Nature 276:574–577CrossRefGoogle Scholar
  42. Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res Oceans 107(C10). doi: 10.1029/2000JC000438
  43. Pierrehumbert RT (2004) High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429:646–649CrossRefGoogle Scholar
  44. Pierrehumbert RT (2005) Climate dynamics of a hard Snowball Earth. J Geophys Res 110. doi: 10.1029/2004JD005162
  45. Pollard D, Kasting JF (2004) Climate-ice sheet simulations of neoproterozoic glaciation before and after collapse to snowball earth. The Extreme Proterozoic: Geology, Geochemistry, and Climate. Geophysical Monograph series 146Google Scholar
  46. Pollard D, Kasting J.F (2005) Snowball earth: a thin-ice solution with flowing sea glaciers. J Geophys Res Oceans 110. doi: 10.1029/2004JC002525
  47. Rampino MR, Self S (1992) Volcanic winter and accelerated glaciation following the toba super-eruption. Nature 359:50–52CrossRefGoogle Scholar
  48. Rampino MR, Self S et al (1988) Volcanic Winters. Annu Rev Earth Planet Sci 16:73–99CrossRefGoogle Scholar
  49. Ramstein G, Fluteau F, Besse J, Joussaume S (1997) Effect of orogeny, plate motion and land sea distribution on Eurasian climate change over the past 30 million years. Nature 386:788–795CrossRefGoogle Scholar
  50. Rhodes J, Armstrong RL, Warren SG (1987) Mode of formation of “ablation hollows” controlled by dirt content of snow. J Glaciol 33(114):135–139Google Scholar
  51. Ridgwell AJ, Kennedy MJ, Caldeira K (2003) Carbonate deposition, climate stability, and neoproterozoic ice ages. Science 302:859–862CrossRefGoogle Scholar
  52. Rind D, Peteet D, Kukla G (1989) Can Milankovitch orbital variations initiate the growth of ice sheets in a general-circulation model. J Geophys Res Atmos 94:12851–12871CrossRefGoogle Scholar
  53. Schrag DP, Berner RA, Hoffman PF, Halverson GP (2002) On the initiation of a snowball Earth. Geochem Geophys Geosyst 3. doi: 10.1029/2001GC000219
  54. Suzuki T, Tanaka M, Nakajima T (1993) The microphysical feedback of cirrus cloud in climate-change. J Meteorol Soc Jpn 71:701–714Google Scholar
  55. Torsvik TH, Carter LM, Ashwal LD, Bhushan SK, Pandit MK, Jamtveit B (2001) Rodinia refined or obscured: palaeomagnetism of the Malani igneous suite (NW India). Precambr Res 108:319–333CrossRefGoogle Scholar
  56. Town MS, Walden VP et al (2005) Spectral and broadband longwave downwelling radiative fluxes, cloud radiative forcing, and fractional cloud cover over the South Pole. J Clim 18(20):4235–4252CrossRefGoogle Scholar
  57. Walden VP, Warren SG, Tuttle E (2003) Atmospheric ice crystals over the Antarctic Plateau in winter. J Appl Meteorol 42:1391–1405CrossRefGoogle Scholar
  58. Warren SG (1982) Optical-properties of snow. Rev Geophys 20(1):67–89CrossRefGoogle Scholar
  59. Warren SG, Brandt RE (2006) Comment on “snowball earth: a thin-ice solution with flowing sea glaciers’’ In: Pollard D, Kasting JF. J Geophys Res Oceans 111. doi: 10.1029/2005JC003411
  60. Warren SG, Brandt RE, Grenfell TC, McKay CP (2002) Snowball earth: ice thickness on the tropical ocean. J Geophys Res Oceans, 107. doi: 10.1029/2001JC001123
  61. Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Taylor K (1996) Potential atmospheric impact of the Toba mega-eruption similar to 71,000 years ago. Geophys Res Lett 23:837–840CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Guillaume Le Hir
    • 1
    Email author
  • Yannick Donnadieu
    • 2
  • Gerhard Krinner
    • 3
  • Gilles Ramstein
    • 2
  1. 1.Institut de Physique du Globe de ParisUniversité ParisParisFrance
  2. 2.LSCECNRS-CEA-UVSQGif sur Yvette CedexFrance
  3. 3.LGGECNRS and UJF GrenobleSaint Martin d’Héres CedexFrance

Personalised recommendations