Climate Dynamics

, Volume 36, Issue 5–6, pp 1023–1036 | Cite as

The radiation budget in a regional climate model

  • Steffen KotheEmail author
  • A. Dobler
  • A. Beck
  • B. Ahrens


The long- and short-wave components of the radiation budget are among the most important quantities in climate modelling. In this study, we evaluated the radiation budget at the earth’s surface and at the top of atmosphere over Europe as simulated by the regional climate model CLM. This was done by comparisons with radiation budgets as computed by the GEWEX/SRB satellite-based product and as realised in the ECMWF re-analysis ERA40. Our comparisons show that CLM has a tendency to underestimate solar radiation at the surface and the energy loss by thermal emission. We found a clear statistical dependence of radiation budget imprecision on cloud cover and surface albedo uncertainties in the solar spectrum. In contrast to cloud fraction errors, surface temperature errors have a minor impact on radiation budget uncertainties in the long-wave spectrum. We also evaluated the impact of the number of atmospheric layers used in CLM simulations. CLM simulations with 32 layers perform better than do those with 20 layers in terms of the surface radiation budget components but not in terms of the outgoing long-wave radiation and of radiation divergence. Application of the evaluation approach to similar simulations with two additional regional climate models confirmed the results and showed the usefulness of the approach.


Regional climate modelling Radiation budget Evaluation 



SRB data were obtained from the NASA Langley Research Centre and ERA40 data were provided by ECMWF. Data from REMO and ALADIN were obtained from the data archive of the EU-project ENSEMBLES. The authors also acknowledge funding from the Hessian initiative for the development of scientific and economic excellence (LOEWE) at the Biodiversity and Climate Research Centre (BiK-F), Frankfurt/Main. Additionally, the authors want to thank two anonymous reviewers for their helpful advices.


  1. Ahrens B, Karstens U, Rockel B, Stuhlmann R (1998) On the validation of the atmospheric model REMO with ISCCP data and precipitation measurements using simple statistics. Meteorol Atmos Phys (68):127–142. doi: 10.1007/BF01030205
  2. Allen J (1971) Measurements of cloud emissivity in the 8–13 μ waveband. J Appl Meteorol 10:260–265CrossRefGoogle Scholar
  3. Beck A, Ahrens B, Stadelbacher K (2004) Impact of nesting strategies in dynamical downscaling of reanalysis data. Geophys Res Lett 31:L19101. doi: 10.1029/2004GL020115 CrossRefGoogle Scholar
  4. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term applications. COSMO Newsl 6:225–235Google Scholar
  5. Corti T, Peter T (2009) A simple model for cloud radiative forcing. Atmos Chem Phys Discuss 9:8541–8560CrossRefGoogle Scholar
  6. Dobler A, Ahrens B (2008) Precipitation by a regional climate model and bias correction in Europe and South Asia. Meteorol Z 17(4):499–509CrossRefGoogle Scholar
  7. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108(D3):4124. doi: 10.1029/2002JD002287 CrossRefGoogle Scholar
  8. Gibson JK, Kållberg P, Uppala S, Nomura A, Hernandez A, Serrano E (1997) ERA description. ECMWF ERA15 Project Report Series, 1Google Scholar
  9. Giorgi F, Marinucci MR, Visconti G (1990) Use of a limited area model nested in a general circulation model for regional climate simulation over Europe. J Geophys Res 95(18):413–418 431Google Scholar
  10. Gupta SK, Ritchey NA, Wilber AC, Whitlock CH, Gibson GG, Stackhouse PW (1999) A climatology of surface radiation budget derived from satellite data. J Clim 12:2691–2710CrossRefGoogle Scholar
  11. Gupta SK, Stackhouse PW, Mikovitz JC, Cox SJ, Zhang T (2006) Surface radiation budget project completes 22-year data set. GEWEX WCRP News 16(4):12–13Google Scholar
  12. Hagemann S, Machenhauer B, Jones R, Christensen O, Déqué M, Jacob D, Vidale P (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23(5):547–567CrossRefGoogle Scholar
  13. Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. Eos 85:566CrossRefGoogle Scholar
  14. Hollweg HD, Fast I, Hennemuth B, Keup-Thiel E, Lautenschlager M, Legutke S, Schubert M, Wunram C (2008) Ensemble simulations over Europe with the regional climate model CLM forced with IPCC AR4 global scenarios. Technical Report No. 3, Max Planck Institute for Meteorology, Hamburg, GermanyGoogle Scholar
  15. Jacob D, Andrae U, Elgered G, Fortelius C, Graham LP, Jackson SD, Karstens U, Koepken C, Lindau R, Podzun R, Rockel B, Rubel F, Sass HB, Smith RND, Van den Hurk BJJM, Yang X (2001) A comprehensive model intercomparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77(1–4):19–43CrossRefGoogle Scholar
  16. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Hirschi M, Jones R, Kjellström E, Lenderink G, Rockel B, Sànchez ES, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81(1):31–52. doi: 10.1007/s10584-006-9213-4 CrossRefGoogle Scholar
  17. Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Seneviratne SI (2008) Analysis of ERA40-driven CLM simulations for Europe. Meteorol Z 17(4):349–367CrossRefGoogle Scholar
  18. Jaeger EB, Stöckli R, Seneviratne SI (2009) Analysis of planetary boundary layer fluxes and land–atmosphere coupling in the regional climate model CLM. J Geophys Res 114:D17106. doi: 10.1029/2008JD011658 CrossRefGoogle Scholar
  19. Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate research. Bull Am Meteorol Soc 84:89–95CrossRefGoogle Scholar
  20. Markovic M, Jones CG, Vaillancourt PA, Paquin D, Winger K, Paquin-Ricard D (2008) An evaluation of the surface radiation budget over North America for a suite of regional climate models against surface station observations. Clim Dyn 31(7–8):779–794CrossRefGoogle Scholar
  21. Marras S, Jimenez P, Jorba O, Perez C, Baldasano JM (2007) Present-day climatic simulations run with two GCMs: a comparative evaluation against ERA40 reanalysis data. American Geophysical Union, Fall Meeting 2007Google Scholar
  22. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  23. Ohmura A, Dutton EG, Forgan B, Fröhlich C, Gilgen H, Hegner H, Heimo A, König-Langlo G, McArthur B, Müller G, Philipona R, Pinker R, Whitlock CH, Dehne K, Wild M (1998) Baseline Surface Radiation Network (BSRN/WCRP): new precision radiometry for climate research. Bull Am Meteorol Soc 79(10):2115–2136CrossRefGoogle Scholar
  24. Pinker RT, Laszlo I (1992) Modeling surface solar irradiance for satellite applications on a global scale. J Appl Meteorol 31:194–211CrossRefGoogle Scholar
  25. Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus 60A(5):885–897. doi: 10.1111/j.1600-0870.2008.00343.x Google Scholar
  26. Reichler T, Kim J (2008) Uncertainties in the climate mean state of global observations, reanalyses, and the GFDL climate model. J Geophys Res 113:D05106. doi: 10.1029/2007JD009278 CrossRefGoogle Scholar
  27. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325CrossRefGoogle Scholar
  28. Sanchez-Gomez E, Somot S, Déqué M (2008) Ability of an ensemble of regional climate models to reproduce the weather regimes during the period 1961–2000. Clim Dyn 33(5):723–736. doi: 10.1007/s00382-008-0502-7 CrossRefGoogle Scholar
  29. Shmakin AB, Milly PCD, Dunne KA (2002) Global modeling of land water and energy balances. Part III: interannual variability. J Hydrometeorol 3:311–321CrossRefGoogle Scholar
  30. Smiatek G, Rockel B, Schättler U (2008) Time invariant data preprocessor for the climate version of the COSMO model (COSMO-CLM). Meteorol Z 17(4):395–405CrossRefGoogle Scholar
  31. Steppeler J, Dom G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96CrossRefGoogle Scholar
  32. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  33. Tjernström M, Sedlar J, Shupe MD (2008) How well do regional climate models reproduce radiation and clouds in the arctic? An evaluation of ARCMIP simulations. J Appl Meteorol Climatol 47:2405–2422CrossRefGoogle Scholar
  34. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA40 re-analysis. Q J R Meteorol Soc 612:2961–3012CrossRefGoogle Scholar
  35. Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(D18):4586. doi: 10.1029/2002JD002810 CrossRefGoogle Scholar
  36. Warnecke G (1997) Meteorologie und Umwelt: Eine Einführung. Springer, HeidelbergGoogle Scholar
  37. Wild M (2008) Short-wave and long-wave surface radiation budgets in GCMs: a review based on the IPCC-AR4/CMIP3 models. Tellus A 60(5):932–945CrossRefGoogle Scholar
  38. Wild M, Ohmura A, Gilgen H, Morcrette JJ (1998) The distribution of solar energy at the earth’s surface as calculated in the ECMWF re-analysis. Geophys Res Lett 25(23):4373–4376CrossRefGoogle Scholar
  39. Wild M, Ohmura A, Gilgen H, Morcrette JJ, Slingo A (2001) Evaluation of downward longwave radiation in general circulation models. J Clim 14:3227–3239CrossRefGoogle Scholar
  40. Winter JM, Eltahir EA (2008) Evaluating regional climate model version 3 Over the Midwestern United States. American Geophysical Union, Spring Meeting 2008Google Scholar
  41. Wyser K, Jones C, Du P, Girard E, Willén U, Cassano J, Christensen J, Curry J, Dethloff K, Haugen J, Jacob D, Køltzow M, Laprise R, Lynch A, Pfeifer S, Rinke A, Serreze M, Shaw M, Tjernström M, Zagar M (2008) An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models. Clim Dyn 30(2–3):203–223CrossRefGoogle Scholar
  42. Zhang Y, Rossow WB, Stackhouse PW (2006) Comparison of different global information sources used in surface radiative flux calculation: radiative properties of the near-surface atmosphere. J Geophys Res 111:D13106. doi: 10.1029/2005JD006873 CrossRefGoogle Scholar
  43. Zhang Y, Rossow WB, Stackhouse PW (2007) Comparison of different global information sources used in surface radiative flux calculation: radiative properties of the surface. J Geophys Res 112:D01102. doi: 10.1029/2005JD007008 CrossRefGoogle Scholar
  44. Zhang T, Stackhouse PW, Gupta SK, Cox SJ, Mikovitz JC (2009) Validation and analysis of the release 3.0 of the NASA GEWEX surface radiation budget dataset. AIP Conf Proc 1100:597. doi: 10.1063/1.3117057 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.LOEWE Biodiversity and Climate Research CentreFrankfurt am MainGermany
  2. 2.Institute for Atmospheric and Environmental SciencesGoethe-University FrankfurtFrankfurt am MainGermany
  3. 3.Central Institute for Meteorology and GeodynamicsViennaAustria

Personalised recommendations