Advertisement

Climate Dynamics

, Volume 35, Issue 7–8, pp 1439–1459 | Cite as

Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

  • Thomas L. FrölicherEmail author
  • Fortunat Joos
Article

Abstract

The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO2 agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO2 given the irreversible impacts of anthropogenic carbon emissions.

Keywords

Carbon Emission Aragonite Dissolve Inorganic Carbon Atlantic Meridional Overturning Circulation Ocean Acidification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Simulations were carried out at the Swiss National Computing Center in Manno, Switzerland. This study is supported by the EU projects CARBOOCEAN (511176), EUROCEANS (511106-2) and EPOCA (FP7/2007-2013; no. 211384), and the Swiss National Science Foundation. We thank S. C. Doney, I. Fung, K. Lindsay, J. John and colleagues for providing the CSM1.4-carbon code. We thank G.-K. Plattner, K. Strassmann, C. C. Raible and H. Fischer for providing the forcing dataset and discussion, and J. Orr and M. Steinacher for the standard OCMIP carbonate chemistry routines.

References

  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR climate system model. Proc Natl Acad Sci 104(10):3713–3718. doi: 10.1073/pnas.0605064 CrossRefGoogle Scholar
  2. Archer D, Brovkin V (2008) The millennial atmospheric lifetime of anthropogenic CO2. Clim Change 90:283–297. doi: 10.1007/s10584-008-9413-1 CrossRefGoogle Scholar
  3. Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamic of fossil fuel CO2 neutralization by marine CaCO3. Glob Biogeochem Cycles 12(2):259–276. doi: 10.1029/98GB00744 CrossRefGoogle Scholar
  4. Archer D, Eby M, Brovkin V, Ridgwell A, Cao L, Mikolajewicz U, Caldeira K, Matsumoto K, Munhoven G, Montenegro A, Tokos K (2009) Atmospheric lifetime of fossil fuel carbon dioxide. Annu Rev Earth Planet Sci 373:21.1–21.18. doi: 10.1146/annurev.earth.031208.100206 Google Scholar
  5. Blackford JC, Gilbert FJ (2007) pH variability and CO2 induced acidification in the North Sea. J Mar Syst 64:229–241. doi: 10.1016/j.jmarsys.2006.03.016 CrossRefGoogle Scholar
  6. Bopp L, Monfray P, Aumont O, Dufresne JL, Treut HL, Madec G, Terray L, Orr J (2001) Potential impact of climate change on marine export production. Glob Biogeochem Cycles 15:81–99. doi: 10.1029/1999GB001256 CrossRefGoogle Scholar
  7. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12–D106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  8. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04. doi: 10.1029/2004JC002671
  9. Cao L, Caldeira K, Jain AK (2007) Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophys Res Lett 34:L05607. doi: 10.1029/2006GL028605
  10. Conkright ME, Locarnini RA, Garcia H, Brien TO, Boyer T, Stephens C, Antonov J (2002) World Ocean Atlas 2001: objective analyses, data statistics, and figures, cd-rom documentation. Technical report National Oceanographic Data Center, Silver Spring, MDGoogle Scholar
  11. Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000) Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408(6809):184–187. doi: 10.1038/35041539 CrossRefGoogle Scholar
  12. De’ath G, Lough JM, Fabricius KE (2009) Declining coral calcification on the great barrier reef. Science 323(5910):116–119. doi: 10.1126/science.1165283 CrossRefGoogle Scholar
  13. Doney SC, Lindsay K, Fung I, John J (2006) Natural variability in a stable, 1000-year global coupled climate-carbon cycle simulation. J Clim 19:3033–3054. doi: 10.1175/JCLI3783.1 CrossRefGoogle Scholar
  14. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  15. Eby M, Zickfeld K, Montenegro A, Archer D, Meissner KJ, Weaver AJ (2009) Lifetime of anthropogenic climate change: Millennial time-scales of potential CO2 and surface temperature perturbations. J Clim 22:2501– 2511. doi: 10.1175/2008/JCLI2554.1 Google Scholar
  16. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  17. Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305(5682):362–366. doi: 10.1126/science.1097329 CrossRefGoogle Scholar
  18. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland RV (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H (eds) Climate change 2007: the physical science basis: contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 129–234Google Scholar
  19. Friedlingstein P, Cox P, Betts R, Bopp L, von Bloh W, Brovkin V, Cadule P, Doney S, Eby M, Fung I, Bala G, John J, Jones C, Joos F, Kato T, Kawamiya M, Knorr W, Lindsay K, Matthews HD, Raddatz T, Rayner P, Reick C, Roeckner E, Schnitzler KG, Schnur R, Strassmann K, Weaver AJ, Yoshikawa C, Zeng N (2006) Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Clim 19(14):3337–3353. doi: 10.1175/JCLI3800.1 CrossRefGoogle Scholar
  20. Frölicher TL, Joos F, Plattner GK, Steinacher M, Doney SC (2009) Natural variability and anthropogenic trends in oceanic oxygen in a coupled carbon cycle-climate model ensemble. Glob Biogeochem Cycles 23:GB1003. doi: 10.1029/2008GB003316 CrossRefGoogle Scholar
  21. Fung IY, Doney SC, Lindsay K, John J (2005) Evolution of carbon sinks in a changing climate. Proc Natl Acad Sci 102(32):11201–11206. doi: 10.1073/pnas.0504949102 Google Scholar
  22. Gangstø R, Gehlen M, Schneider B, Bopp L, Aumont O, Joos F (2008) Modeling the marine aragonite cycle: changes under rising carbon dioxide and its role in shallow water CaCO3 dissolution. Biogeosciences 5:1057 – 1072CrossRefGoogle Scholar
  23. Gehlen M, Gangstø R, Schneider B, Bopp L, Aumont O, Ethe C (2007) The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. Biogeosciences 4:505– 519CrossRefGoogle Scholar
  24. Gerber M, Joos F, Vazquez-Rodriguez M, Touratier F, Goyet C (2009) Regional air–sea fluxes of anthropogenic carbon inferred with an Ensemble Kalman Filter. Glob Biogeochem Cycles 23:GB1013. doi: 10.1029/2008GB003247 CrossRefGoogle Scholar
  25. Gerber S, Joos F, Brügger PP, Stocker TF, Mann ME, Sitch S, Scholze M (2003) Constraining temperature variations over the last millennium by comparing simulated and observed atmospheric CO2. Clim Dyn 20:281–299. doi: 10.1007/s00382-002-0270-8 Google Scholar
  26. Gruber N, Gloor M, Fletcher SEM, Doney SC, Dutkiewicz S, Follows M, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks and transport of atmospheric CO2. Glob Biogeochem Cycles 23:GB1005. doi: 10.1.1029/2008GB003349
  27. Heinze C (2004) Simulating oceanic CaCO3 export production in the greenhouse. Geophys Res Lett 31:L16308. doi: 10.1029/2004GL020613
  28. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Sience 318:1737–1742. doi: 10.1126/science.115,209Google Scholar
  29. Hofmann M, Schellnhuber HJ (2009) Ocean acidification affects marine carbon pump and triggers extended marine oxygen holes. Proc Natl Acad Sci 106(9):3017–3022. doi: 10.1073/pnas.0813384106 CrossRefGoogle Scholar
  30. Iglesias-Rodriguez MD, Halloran PR, Rickaby REM, Hall IR, Colmenero-Hidalgo E, Gittins JR, Green DRH, Tyrell T, Gibbs SJ, von Dassow P, Rehm E, Armbrust EV, Boessenkool KP (2008) Phytoplankton calcification in a high-CO2 world. Science 320(5874):336–340. doi: 10.1126/science.1154122 CrossRefGoogle Scholar
  31. Joos F, Spahni R (2008) Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc Natl Acad Sci 105(5):1425–1430. doi: 10.1073/pnas.0707386105 CrossRefGoogle Scholar
  32. Joos F, Plattner GK, Stocker TF, Marchal O, Schmittner A (1999) Global warming and marine carbon cycle feedbacks on future atmospheric CO2. Science 284(5413):464–467. doi: 10.1126/science.284.5413.464 CrossRefGoogle Scholar
  33. Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, Plattner GK, Gerber S, Hasselmann K (2001) Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change IPCC emission scenarios. Glob Biogeochem Cycles 15(4):891–907CrossRefGoogle Scholar
  34. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister J, Feely RA, Millero F, Mordy C, Peng TH (2004) A global ocean carbon climatology: results from GLODAP. Glob Biogeochem Cycles 18:GB4031. doi: 10.1029/2004GB002247
  35. Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284(5411):118–120. doi: 10.1126/science.284.5411.118 CrossRefGoogle Scholar
  36. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110(C09S07) doi: 10.1029/2004JC002576
  37. Lawrence DM, Slater AG (2005) A projection of severe near-surface permafrost degradation during the 21st century. Geophys Res Lett 32:L24401. doi: 10.1029/2005GL025080 CrossRefGoogle Scholar
  38. Lenton TM, Williamson MS, Edwards NR, Marsh R, Price AR, Ridgwell AJ, Shepherd JG, Cox SJ, Team TG (2006) Millennial timescale carbon cycle and climate change in an efficient Earth system model. Clim Dyn 26:687–711. doi: 10.1007/s00382-006-0109-9 CrossRefGoogle Scholar
  39. Lüthi D, Floch ML, Bereiter B, Blunier T, Barnola JM, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Science 453:379–382. doi: 10.1038/nature06949 Google Scholar
  40. Maier-Reimer E, Kriest I, Segschneider J, Wetzel P (2005) The HAMburg Ocean Carbon Cycle model HAMOCC5.1. Berichte zur Erdsystemforschung 14/2005, Max Planck-Institut für Meteorologie, Hamburg, GermanyGoogle Scholar
  41. Manizza M, Quéré CL, Watson AJ, Buitenhuis ET (2008) Ocean biogeochemical response to phytoplankton-light feedback in a global model. J Geophys Res 113:C10010. doi: 10.1029/2007JC004478
  42. Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35:L04705. doi: 10.1029/2007GL032388
  43. Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Teng WGSH (2005) How much more global warming and sea level rise? Science 307(5716):1769–1772. doi: 10.1126/science.1106663 CrossRefGoogle Scholar
  44. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 747–845Google Scholar
  45. Mikolajewicz U, Gröger M, Maier-Reimer E, Schurgers G, Vizcaino M, Winguth AME (2007) Long-term effects of anthropogenic CO2 emissions simulated with a complex Earth system model. Clim Dyn 28(6):599–633. doi: 10.1007/s00382-006-0204-y CrossRefGoogle Scholar
  46. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  47. Montenegro A, Brovkin V, Eby M, Archer D, Weaver AJ (2007) Long term fate of anthropogenic carbon. Geophys Res Lett 34:L19707. doi: 10.1029/2007GL030905 CrossRefGoogle Scholar
  48. Moore JK, Doney SC, Kleypas JA, Glover DM, Fung IY (2002) An intermediate complexity marine ecosystem model for the global domain. Deep Sea Res II 49:403–462CrossRefGoogle Scholar
  49. Müller SA, Joos F, Edwards NR, Stocker TF (2006) Water mass distribution and ventilation time scales in a cost-efficient, three-dimensional ocean model. J Clim 19(21):5479–5499. doi: 10.1175/JCLI3911.1 CrossRefGoogle Scholar
  50. Najjar RG, Jin X, Louanchi F, Aumont O, Caldeira K, Doney SC, Dutay JC, Follows M, Gruber N, Joos F, Lindsay K, Maier-Reimer E, Matear RJ, Matsumoto K, Monfray P, Mouchet A, Orr JC, Plattner GK, Sarmiento JL, Schlitzer R, Slater RD, Weirig MF, Yamanaka Y, Yool A (2007) Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: results from phase II of the Ocean Carbon-Cycle Model Intercomparison Project (OCMIP-2). Glob Biogeochem Cycles 21:GB3007. doi: 10.1029/2006GB002857
  51. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RM, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear RJ, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on marine calcifying organisms. Nature 437:681–686. doi: 10.1038/nature04095 CrossRefGoogle Scholar
  52. Oschlies A, Schulz KG, Riebesell U, Schmittner A (2008) Simulated 21st century’s increase in oceanic suboxia by CO2-enhanced biotic carbon export. Glob Biogeochem Cycles 22(4):GB4008. doi: 10.1029/2007GB003147 CrossRefGoogle Scholar
  53. Plattner GK, Joos F, Stocker TF, Marchal O (2001) Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus B 53(5):564–592. doi: 10.1034/j.1600-0889 Google Scholar
  54. Plattner GK, Knutti R, Joos F, Stocker TF, von Bloh W, Brovkin V, Cameron D, Driesschaert E, Dutkiewiz S, Eby M, Edwards NR, Fichefet T, Hargreaves JC, Jones CD, Loutre MF, Matthews HD, Mouchet A, Müller SA, Nawrath S, Price A, Sokolov A, Strassmann KM, Weaver AJ (2008) Long-term climate commitments projected with climate—carbon cycle models. J Clim 21(12):2721–2751. doi: 10.1175/2007JCLI1905.1 CrossRefGoogle Scholar
  55. Randerson JT, Thompson MV, Conway TJ, Fung IY, Field CB (1997) The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Glob Biogeochem Cycles 11:535–560CrossRefGoogle Scholar
  56. Ridgwell A, Zondervan I, Hargreaves JC, Bijma J, Lenton TM (2007) Assessing the potential long-term increase of oceanic fossil fuel CO2 uptake due to CO2-calcification feedback. Biogeosciences 4:481–492CrossRefGoogle Scholar
  57. Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng TH, Koyzr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. doi: 10.1126/science.1097403 CrossRefGoogle Scholar
  58. Schmittner A, Oschlies A, Matthews HD, Galbraith ED (2008) Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Global Biogeochem Cycles 22:GB1013,  10.1029/2007GB002953
  59. Schuur EAG, Vogel JG, Crummer KG, Lee H, Sickman JO, Osterkamp TE (2009) The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459:556–559. doi: 10.1038/nature08031 CrossRefGoogle Scholar
  60. Siegenthaler U, Joos F (1992) Use of a simple model for studying oceanic tracer distributions and the global carbon cycle. Tellus B 44:186–207CrossRefGoogle Scholar
  61. Siegenthaler U, Oeschger H (1978) Predicting future atmospheric carbon dioxide levels. Science 199(4327):388–395. doi: 10.1126/science.199.4327.388 CrossRefGoogle Scholar
  62. Solomon S, Plattner GK, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106(6):1704–1709. doi: 10.1073/pnas.0812721106 CrossRefGoogle Scholar
  63. Steinacher M, Joos F, Frölicher TL, Plattner GK, Doney SC (2009a) Imminent ocean acidification in the Arctic projected with the NCAR global coupled carbon cycle-climate model. Biogeosciences 6:515–533CrossRefGoogle Scholar
  64. Steinacher M, Joos F, Frölicher TL, Bopp L, Cadule P, Doney SC, Gehlen M, Schneider B, Segschneider J (2009b) Projected 21st century decrease in marine productivity: a multi-model analysis. Biogeosci Discuss 6:7933–7981CrossRefGoogle Scholar
  65. Strassmann KM, Joos F, Fischer G (2008) Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B 60(4):583–603. doi: 10.1111/j.1600-0889.2008.00340.x CrossRefGoogle Scholar
  66. Strassmann KM, Joos F, Plattner GK (2009) CO2 and non-CO2 radiative forcing in climate projections for twenty-first century mitigation. Clim Dyn 33(6):737–749. doi: 10.1007/s00382-008-0505-4 CrossRefGoogle Scholar
  67. Tarnocai C, Canadell JG, Schuur EAG, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem Cycles 23:GB2023. doi: 10.1029/2008GB003327
  68. Van Vuuren DP, Meinshausen M, Plattner GK, Joos F, Strassmann KM, Smith SJ, Wigley TML, Raper SCB, Riahi K, de~la Chesnaye F, den Elzen M, Fujino J, Jiang K, Nakicenovic N, Paltsev S, Reilly JM (2008) Temperature increase of 21st century stabilization scenarios. Proc Natl Acad Sci 105(40):15258–15262. doi: 10.1073pnas.0711129105 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Climate and Environmental Physics, Physics InstituteUniversity of BernBernSwitzerland
  2. 2.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland

Personalised recommendations