Climate Dynamics

, Volume 34, Issue 2–3, pp 153–184 | Cite as

Dynamics of sea-surface temperature anomalies in the Southern Ocean diagnosed from a 2D mixed-layer model

  • Frédéric Vivier
  • Daniele Iudicone
  • Fabiano Busdraghi
  • Young-Hyang Park
Article

Abstract

We analyze the processes responsible for the generation and evolution of sea-surface temperature anomalies observed in the Southern Ocean during a decade based on a 2D diagnostic mixed-layer model in which geostrophic advection is prescribed from altimetry. Anomalous air–sea heat flux is the dominant term of the heat budget over most of the domain, while anomalous Ekman heat fluxes account for 20–40% of the variance in the latitude band 40°−60°S. In the ACC pathway, lateral fluxes of heat associated with anomalous geostrophic currents are a major contributor, dominating downstream of several topographic features, reflecting the influence of eddies and frontal migrations. A significant fraction of the variability of large-scale SST anomalies is correlated with either ENSO or the SAM, each mode contributing roughly equally. The relation between the heat budget terms and these climate modes is investigated, showing in particular that anomalous Ekman and air–sea heat fluxes have a co-operating effect (with regional exceptions), hence the large SST response associated with each mode. It is further shown that ENSO- or SAM-locked anomalous geostrophic currents generate substantial heat fluxes in all three basins with magnitude comparable with that of atmospheric forcings for ENSO, and smaller for the SAM except for limited areas. ENSO-locked forcings generate SST anomalies along the ACC pathway, and advection by mean flows is found to be a non-negligible contribution to the heat budget, exhibiting a wavenumber two zonal structure, characteristic of the Antarctic Circumpolar Wave. By contrast SAM-related forcings are predominantly zonally uniform along the ACC, hence smaller zonal SST gradients and a lesser role of mean advection, except in the SouthWest Atlantic. While modeled SST anomalies are significantly correlated with observations over most of the Southern Ocean, the analysis of the data-model discrepancies suggests that vertical ocean physics may play a significant role in the nonseasonal heat budget, especially in some key regions for mode water formation.

Keywords

Southern Ocean SST anomalies Mixed layer Heat budget ENSO SAM 

Notes

Acknowledgments

This study has benefited from discussions with Drs D. Ferreira, J.-B. Sallée, J. Le Sommer, F. d’Oviedo. Valuable comments from Dr Douglas Martinson and an anonymous reviewer have been of great help to improve the manuscript. The altimeter data were produced by Ssalto/Duacs as part of the Environment and Climate EU Enact project (EVK2-CT2001-00117) and distributed by Aviso, with support from CNES. The mean dynamic topography Rio05 was produced by CLS Space Oceanography Division. Argo data were collected and made freely available by the International ARGO project and the national programmes contributing to it. Other sources of hydrographic data used to estimate the MLD include the AMT project, and the SeaOS program (Elephant seals as oceanographic samplers) supported by CNES. We thank CNRS, CNES (OSTST program), and the French-Italian University for their support.

References

  1. Alexander MA, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137CrossRefGoogle Scholar
  2. Bailleul F, Charrassin J-B, Ezraty R, Girard-Ardhuin F, McMahon CR, Field IC, Guinet C (2007) Southern elephant seals from Kerguelen Islands confronted by antarctic sea ice. Changes in movements and in diving behaviour. Deep Sea Res Part II 54:343–355CrossRefGoogle Scholar
  3. Bonekamp H, Sterl A, Komen GJ (1999) Interannual variability in the Southern Ocean from an ocean model forced by European Center for Medium-Range Weather Forecasts reanalysis fluxes. J. Geophys. Res. 104:13317–13331CrossRefGoogle Scholar
  4. Busdraghi F (2006) Variabilità bassa frequenza dello strato turbolento superficiale dell’Oceano Australe, Master’s thesis, Università di Pisa, Facoltà di Scienze Matematiche Fisiche e Naturali, Tesi di Laurea SpecialisticaGoogle Scholar
  5. Cai W, Baines PG (2001) Forcing of the Antarctic Circumpolar Wave by El Niño-Southern Oscillation teleconnections. J Geophys Res 106:9019–9038CrossRefGoogle Scholar
  6. Carleton AM (2003) Atmospheric teleconnections involving the Southern Ocean. J Geophys Res 108(C4):8080CrossRefGoogle Scholar
  7. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881CrossRefGoogle Scholar
  8. Charrassin J-B et al (2008) Southern ocean frontal structure and sea-ice formation rates revealed by elephant seals. Proc Natl Acad Sci USA 105:11634–11639CrossRefGoogle Scholar
  9. Christoph M, Barnett TP, Roeckner E (1998) The Antarctic Circumpolar Wave in a coupled ocean–atmosphere GCM. J Clim 11:3087–3104CrossRefGoogle Scholar
  10. Ciasto LM, Thompson DWJ (2008) Observations of large-scale ocean–atmosphere interaction in the southern hemisphere. J Clim 21(6):1244–1259CrossRefGoogle Scholar
  11. Colin de Verdière A, Blanc ML (2001) Thermal resonance of the atmosphere to SST anomalies. Implications for the Antarctic Circumpolar Wave. Tellus 53A:403–424Google Scholar
  12. Danabasoglu G, Marshall J (2007) Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Model 18(2): 122–141CrossRefGoogle Scholar
  13. De Boyer Montégut C, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res 109:C12003CrossRefGoogle Scholar
  14. Dong S, Kelly KA (2004) Heat budget in the Gulf Stream region: the importance of heat storage and advection. J Phys Oceanogr 34:1214–1231CrossRefGoogle Scholar
  15. Dong S, Sprintall J, Gille ST, Talley L (2008) Southern Ocean mixed-layer depth from Argo float profiles. J Geophys Res 113:C06013Google Scholar
  16. Dong S, Gille ST, Sprintall J (2007) An assessment of the Southern Ocean mixed-layer heat budget. J Clim 20:4425–4442Google Scholar
  17. Ducet N, Le Traon PY, Reverdin G (2000) Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1/2. J Geophys Res 105:19477–19498CrossRefGoogle Scholar
  18. Efron B, Tibshirani RJ (1994) An introduction to the Bootstrap, Monographs on Statistics and Applied Probability. Chapman & Hall/CRCGoogle Scholar
  19. Ferreira D, Marshall J, Heimbach P (2005) Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean circulation model and its adjoint. J Phys Oceanogr 35:1891–1910CrossRefGoogle Scholar
  20. Frankignoul C (1985) Sea surface temperature anomalies, planetary waves, and air–sea feedback in the middle latitudes. Rev Geophys 23(4):357–390CrossRefGoogle Scholar
  21. Fu L-L (2003) Wind-forced intraseasonal sea level variability of the extratropical oceans. J Phys Oceanogr 33:436–449CrossRefGoogle Scholar
  22. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the southern hemisphere tropospheric circulation. J Clim 12:2113–2213CrossRefGoogle Scholar
  23. Gille ST (1997) The Southern Ocean momentum balance: evidence for topographic effects from numerical model output and altimeter data. J Phys Oceanogr 27:2219–2232CrossRefGoogle Scholar
  24. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462CrossRefGoogle Scholar
  25. Goodman J, Marshall J (1999) A model of decadal middle-latitude Atmosphere-Ocean coupled modes. J Clim 12:621–641CrossRefGoogle Scholar
  26. Haarsma RJ, Selten FM, Opsteegh JD (2000) On the mechanism of the Antarctic Circumpolar Wave. J Clim 13:1461-1480CrossRefGoogle Scholar
  27. Hall A, Visbeck M (2002) Synchronous variability in the southern hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J Clim 15(21):3043–3057CrossRefGoogle Scholar
  28. Hanawa K, Sugimoto S (2004) Reemergence areas of winter sea surface temperature anomalies in the world’s oceans. Geophys Res Lett 31:L10303. doi: 10.1029/2004GL019904 CrossRefGoogle Scholar
  29. Hughes CW, Meredith MP, Heywood KJ (1999) Wind driven transport fluctuations through Drake Passage: a southern mode. J Phys Oceanogr 29(8):1971–1992CrossRefGoogle Scholar
  30. Hughes CW, Woodworth PL, Meredith MP, Stepanov V, Whitworth T III, Pyne A (2003) Coherence of antarctic sea levels, southern hemisphere annular mode, and flow through Drake Passage. Geophys Res Lett 30:1464. doi: 10.1029/2003GL017240 Google Scholar
  31. Iudicone D, Speich S, Madec G, Blanke B (2008) The global conveyor belt from a Southern Ocean perspective. J Phys Oceanogr 38(7):1377–1400CrossRefGoogle Scholar
  32. Jerlov NG (1976) Marine optics no. 14. In: Oceanography Series. Elsevier, Amsterdam, 231 pGoogle Scholar
  33. Karoly D (1989) Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2:1239–1252CrossRefGoogle Scholar
  34. Katz RW, Brown BG (1991) The problem of multiplicity in research on teleconnections. Int J Climatol 11:505–513Google Scholar
  35. Kelly KA (2004) The relationship between oceanic heat transport and surface fluxes in the Western North Pacific: 1970–2000. J Clim 17(3):573–588CrossRefGoogle Scholar
  36. Kidson JW (1988) Interannual variations in the Southern Hemisphere circulation. J Clim 1:1177–1198CrossRefGoogle Scholar
  37. L’Heureux ML, Thompson DWJ (2006) Observed relationships between El Niño Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287CrossRefGoogle Scholar
  38. Liu J, Yuan X, Rind D, Martinson DG (2002) Mechanism study of the ENSO and southern high latitude climate teleconnections. Geophys Res Lett 29(14):1679. doi: 10.1029/2002GL015143 CrossRefGoogle Scholar
  39. Marshall J, Shuckburgh E, Jones H, Hill C (2006) Estimates and implications of surface eddy diffusivity in the Southern Ocean derived from tracer transport. J Phys Oceanogr 36:1806–1821CrossRefGoogle Scholar
  40. Martinson DG, Iannuzzi RA (2003) Spatial/temporal patterns in Weddell gyre characteristics and their relationship to global climate. J Geophys Res 108(C4):8083. doi: 10.1029/2000JC000538 CrossRefGoogle Scholar
  41. Maze G, d’Andrea F, Colin de Verdière A (2006) Low-frequency variability in the outhern Ocean region in a simplified coupled model. J Geophys Res 111:C05010. doi: 10.1029/2005JC003181 CrossRefGoogle Scholar
  42. Morrow R, Church J, Coleman R, Chelton D, White N (1992) Eddy momentum flux and its contribution to the southern ocean momentum balance. Nature 357:482–484. doi: 10.1038/357482a0 CrossRefGoogle Scholar
  43. Morrow R, Brut A, Chaigneau A (2003) Seasonal and interannual variations of the upper ocean energetics between Tasmania and Antarctica. Deep Sea Res Part A 50:339–356Google Scholar
  44. Namias J, Born RM (1970) Temporal coherence in North Pacific sea-surface temperature patterns. J Geophys Res 75:5952–5955CrossRefGoogle Scholar
  45. Niiler PP, Kraus EB (1977) One-dimensional models of the upper ocean. In: Kraus EB (ed) Modelling and prediction of the upper layers of the ocean. Pergamon Press, New York, pp 152–172Google Scholar
  46. O’Neill LW, Chelton DB, Esbensen SK (2003) Observations of SST-induced perturbations of the wind stress field over the southern ocean on seasonal timescales. J Clim 16(14):2340–2354CrossRefGoogle Scholar
  47. Park Y-H, Roquet F, Vivier F (2004) Quasi-stationary ENSO wave signals and the Antarctic Circumpolar Wave. Geophys Res Lett 31:L09315. doi: 10.1029/2004GL019806
  48. Phillips HE, Rintoul SR (2000) Eddy variability and energetics from direct current measurements in the Antarctic Circumpolar Current south of Australia. J Phys Oceanogr 30:3050–3076CrossRefGoogle Scholar
  49. Qiu B, Chen S (2006) Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: observations and causes. J Phys Oceanogr 36(9):1751–1762CrossRefGoogle Scholar
  50. Qiu B, Jin F-F (1997) Antarctic Circumpolar Wave: an indication of ocean–atmosphere coupling in the extratropics. Geophys Res Lett 24(21):2585–2588CrossRefGoogle Scholar
  51. Qiu B, Kelly KA (1993) Upper ocean heat balance in the Kuroshio Extension region. J Phys Oceanogr 23:2027–2041CrossRefGoogle Scholar
  52. Renwick JA, Revell MJ (1999) Blocking over the South Pacific and Rossby wave propagation. Mon Weather Rev 127:2233–2247CrossRefGoogle Scholar
  53. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  54. Rintoul SR, England MH (2002) Ekman transport dominates local air–sea fluxes in driving variability of SubAntarctic Mode Water. J Phys Oceanogr 32:1308–1321CrossRefGoogle Scholar
  55. Rio M-H, Hernandez F (2004) A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J Geophys Res 109. doi: 10.1029/2003JC002226
  56. Roemmich D, Gilson J, Willis J, Sutton P, Ridgway K (2005) Closing the time-varying mass and heat budgets for large ocean areas: the Tasman box. J Clim 18(13):2330–2343. doi: 10.1175/JCLI3409.1 CrossRefGoogle Scholar
  57. Roemmich D, Gilson J, Davis R, Sutton P, Wijffels S, Riser S (2007), Decadal spinup of the South Pacific subtropical gyre. J Phys Oceanogr 37(2):162–173. doi: 10.1175/JPO3004.1 CrossRefGoogle Scholar
  58. Roquet F, Park Y-H, Guinet C, Bailleul F, Charrassin J-B (2009) Observations of the Fawn Trough Current over the Kerguelen Plateau from instrumented elephant seals. J Mar Syst 78:377–393. doi: 10.1016/j.jmarsys.2008.11.017 CrossRefGoogle Scholar
  59. Sallée J-B, Wienders N, Speers K, Morrow R (2006) Formation of Subantarctic Mode Water in the Southeast Indian Ocean. Ocean Dyn 56(5-6):525–542CrossRefGoogle Scholar
  60. Sallée JB, Morrow R, Speer K (2008a) Eddy heat diffusion and Subantarctic Mode Water formation. Geophys Res Lett 35:L05607. doi: 10.1029/2007GL032827 CrossRefGoogle Scholar
  61. Sallée J-B, Speer K, Morrow R (2008b) Response of the Antarctic Circumpolar Current to atmospheric variability. J Clim 21(12): 3020–3039. doi: 10.1175/2007JCLI1702.1 CrossRefGoogle Scholar
  62. Sallée JB, Speer K, Morrow R, Lumpkin R (2008c) An estimate of lagrangian eddy statistics and diffusion in the mixed-layer of the Southern Ocean. J Mar Res 66(4):441–463CrossRefGoogle Scholar
  63. Saravanan R, McWilliams JC (1998) Advective ocean–atmosphere interaction: an analytical stochastic model with implications for decadal variability. J Clim 11(2):165–188. doi: 10.1175/1520-0442(1998)011 CrossRefGoogle Scholar
  64. Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142(3-4):346–382CrossRefGoogle Scholar
  65. Sokolov S, Rintoul SR (2002) Structure of Southern Ocean fronts at 140°E. J Mar Syst 37:151–184CrossRefGoogle Scholar
  66. Sokolov S, Rintoul SR (2003) Subsurface structure of interannual temperature anomalies in the Australian sector of the Southern Ocean. J Geophys Res 108:3285CrossRefGoogle Scholar
  67. Speer K, Rintoul SR, Sloyan B (2000) The diabatic Deacon cell. J Phys Oceanogr 30:3212–3222CrossRefGoogle Scholar
  68. Sprintall J (2003) Seasonal to interannual upper-ocean variability in the Drake Passage. J Mar Res 61:27–57CrossRefGoogle Scholar
  69. Talley LD (1999) Simple coupled midlatitude climate models. J Phys Oceanogr 29:2016–2037CrossRefGoogle Scholar
  70. Terray P (2009) Southern hemisphere extra-tropical forcing: a new paradigm for El Niño-Southern Oscillation. Clim Dyn (submitted)Google Scholar
  71. Thompson D, Wallace J (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  72. Venegas SA (2003) The Antarctic Circumpolar Wave: a combination of two signals. J Clim 16:2509–2525CrossRefGoogle Scholar
  73. Venema V, Ament F, Simmer C (2006) A stochastic iterative amplitude adjusted fourier transform algorithm with improved accuracy. Nonlinear Process Geophys 13(3):449–466Google Scholar
  74. Verdy A, Marshall J, Czaja A (2006) Sea surface temperature variability along the path of the Antarctic Circumpolar Current. J Phys Oceanogr 36(7):1317–1331CrossRefGoogle Scholar
  75. Vivier F, Provost C, Meredith MP (2001) Remote and local forcing in the Brazil/Malvinas region. J Phys Oceanogr 31(4):892–913CrossRefGoogle Scholar
  76. Vivier F, Kelly KA, Thompson L (2002) Heat budget in the Kuroshio Extension region: 1993-99. J Phys Oceanogr 32(12):3436–3454CrossRefGoogle Scholar
  77. Vivier F, Kelly KA, Harismendy M (2005) Causes of large-scale sea level variations in the Southern Ocean: Analyses of sea level and a barotropic model. J Geophys Res 110. doi: 10.1029/2004JC002773
  78. Webb DJ, de Cuevas BA (2002) An ocean resonance in the Indian sector of the Southern Ocean. Geophys Res Lett 29(14). doi: 10.1029/2002GL015270
  79. Weijer W, Gille ST, Vivier F (2009) Modal decay in the Australian–Antarctic basin. J Phys Oceanogr 39:2893–2909. doi: 10.1175/2009JPO4209.1 CrossRefGoogle Scholar
  80. Weisse R, Mikolajewicz U, Sterl A, Drijfhout SS (1999) Stochastically forced variability in the Antarctic Circumpolar Current. J Geophys Res 104:11049–11064CrossRefGoogle Scholar
  81. White WB, Peterson RG (1996) An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent. Nature 380:699–702CrossRefGoogle Scholar
  82. White WB, Chao Y, Tai C-K (1998) Coupling of biennal oceanic Rossby waves with overlying atmosphere in the Pacific basin. J Phys Oceanogr 28:1236–1251CrossRefGoogle Scholar
  83. Wilkin JL, Morrow RA (1994) Eddy kinetic energy and momentum flux in the southern ocean: Comparison of a global eddy-resolving model with altimeter, drifter, and current-meter data. J Geophys Res 99(4):7903–7916CrossRefGoogle Scholar
  84. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events - how does 1997/98 rank? Weather 53:315–324Google Scholar
  85. Yu L, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free oceans (1981–2005). Bull Am Meteorol Soc 88(4):527–539. doi: 10.1175/BAMS-88-4-527 CrossRefGoogle Scholar
  86. Yu L, Weller RA, Sun B (2004) Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–1999) by a synthesis approach. J Clim 17:373–393CrossRefGoogle Scholar
  87. Yuan X, Martinson DG (2000) Antarctic sea ice extent and its global connectivity. J Clim 13:1697–1717CrossRefGoogle Scholar
  88. Yuan XJ (2004) ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct Sci 16(4):415–425CrossRefGoogle Scholar
  89. Zhang Y-C, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004), Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J Geophys Res 109. doi: 10.1029/2003JD004457
  90. Zhurbas V, Oh IS (2003) Lateral diffusivity and lagrangian scales in the Pacific Ocean as derived from drifter data. J Geophys Res 108:3141. doi: 10.1029/2002JC00159 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Frédéric Vivier
    • 1
  • Daniele Iudicone
    • 2
  • Fabiano Busdraghi
    • 2
    • 3
  • Young-Hyang Park
    • 4
  1. 1.Laboratoire d’Océanographie et du Climat, Experimentation et Approches Numériques, Institut Pierre-Simon Laplace (LOCEAN-IPSL)Centre National de la Recherche Scientifique (CNRS), Université Pierre et Marie CurieParisFrance
  2. 2.Stazione Zoologica di Napoli (SZN)NaplesItaly
  3. 3.LOCEAN-IPSLParisFrance
  4. 4.LOCEAN-IPSLMuséum National d’Histoire NaturelleParisFrance

Personalised recommendations