Climate Dynamics

, Volume 36, Issue 3–4, pp 473–490 | Cite as

Modes of variability of Southern Hemisphere atmospheric circulation estimated by AGCMs

  • Simon GraingerEmail author
  • Carsten S. Frederiksen
  • Xiaogu Zheng
  • David Fereday
  • Chris K. Folland
  • Emilia K. Jin
  • James L. Kinter
  • Jeff R. Knight
  • Siegfried Schubert
  • Jozef Syktus


The seasonal mean variability of the atmospheric circulation is affected by processes with time scales from less than seasonal to interannual or longer. Using monthly mean data from an ensemble of Atmospheric General Circulation Model (AGCM) realisations, the interannual variability of the seasonal mean is separated into intraseasonal, and slowly varying components. For the first time, using a recently developed method, the slowly varying component in multiple AGCM ensembles is further separated into internal and externally forced components. This is done for Southern Hemisphere 500 hPa geopotential height from five AGCMs in the CLIVAR International Climate of the Twentieth Century project for the summer and winter seasons. In both seasons, the intraseasonal and slow modes of variability are qualitatively well reproduced by the models when compared with reanalysis data, with a relative metric finding little overall difference between the models. The Southern Annular Mode (SAM) is by far the dominant mode of slowly varying internal atmospheric variability. Two slow-external modes of variability are related to El Niño-Southern Oscillation (ENSO) variability, and a third is the atmospheric response to trends in external forcing. An ENSO-SAM relationship is found in the model slow modes of variability, similar to that found by earlier studies using reanalysis data. There is a greater spread in the representation of model slow-external modes in winter than summer, particularly in the atmospheric response to external forcing trends. This may be attributable to weaker external forcing constraints on SH atmospheric circulation in winter.


Modes of variability Southern Hemisphere Atmospheric circulation ENSO Southern Annular Mode 



This work contributes to the CLIVAR International C20C project. J. Sisson assisted in the collection of the C20C AGCM data. S. Grainger is supported by the Australian Climate Change Science Program of the Australian Department of Climate Change. X. Zheng is supported by the New Zealand Foundation for Research, Science and Technology (contract C01X0701) and the SRF for ROCS, SEM China. J. Knight, C. Folland and D. Fereday were supported by the Joint DECC, Defra and MoD Integrated Climate Programme—DECC/Defra (GA01101), MoD (CBC/2B/0417_Annex C5). E. Jin and J. Kinter were supported by grants from the National Science Foundation (ATM-0332910), National Oceanic and Atmospheric Administration (NA04OAR4310034), and National Aeronautics and Space Administration (NNG04GG46G). Comments from M. Zidikheri, H. Zhang and two anonymous reviewers helped to improve this paper.


  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau N-C, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15:2205–2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 CrossRefGoogle Scholar
  2. Bacmeister J, Pegion PJ, Schubert SD, Suarez MJ (2000) Atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. Technical report series on global modeling and data assimilation NASA TM-2000-104606, 194 pp.
  3. Bromwich DH, Fogt RL, Hodges KI, Walsh JE (2007) A tropospheric assessment of the ERA-40, NCEP, and JRA-25 global reanalyses in the polar regions. J Geophys Res 112:D10111. doi: 10.1029/2006JD007859 CrossRefGoogle Scholar
  4. Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embery G (2005) BMRC atmospheric model (BAM) version 3.0: comparison with mean climatology. BMRC research report, vol 108, 56 pp.
  5. Deser C, Phillips AS (2009) Atmospheric circulation trends, 1950–2000: the relative roles of sea surface temperature forcing and direct atmospheric radiative forcing. J Clim 22:396–413. doi: 10.1175/2008JCLI2453.1 CrossRefGoogle Scholar
  6. Folland CK, Shukla J, Kinter J, Rodwell MJ (2002) The climate of the twentieth century project. CLIVAR Exch 7(2):37–39Google Scholar
  7. Frederiksen JS (2002) Genesis of intraseasonal oscillations and equatorial waves. J Atmos Sci 59:2761–2781. doi: 10.1175/1520-0469(2002)059<2761:GOIOAE>2.0.CO;2 CrossRefGoogle Scholar
  8. Frederiksen JS, Frederiksen CS (1993a) Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking, and storm tracks of the global atmosphere during January 1979: linear theory. J Atmos Sci 50:1349–1372. doi: 10.1175/1520-0469(1993)050<1349:MDIOTP>2.0.CO;2 CrossRefGoogle Scholar
  9. Frederiksen JS, Frederiksen CS (1993b) Southern Hemisphere storm tracks, blocking, and low-frequency anomalies in a primitive equation model. J Atmos Sci 50:3148–3163. doi: 10.1175/1520-0469(1993)050<3148:SHSTBA>2.0.CO;2 CrossRefGoogle Scholar
  10. Frederiksen CS, Frederiksen JS (1996) A theoretical model of Australian northwest cloudband disturbances and Southern Hemisphere storm tracks: the role of SST anomalies. J Atmos Sci 53:1410–1432. doi: 10.1175/1520-0469(1996)053<1410:ATMOAN>2.0.CO;2 CrossRefGoogle Scholar
  11. Frederiksen JS, Frederiksen CS (1997) Mechanisms of the formation of intraseasonal oscillations and Australian monsoon disturbances: the roles of convection, barotropic and baroclinic instability. Contrib Atmos Phys 70:39–56Google Scholar
  12. Frederiksen JS, Webster PJ (1988) Alternative theories of atmospheric teleconnections and low-frequency fluctuations. Rev Geophys 26:459–494. doi: 10.1029/RG026i003p00459 CrossRefGoogle Scholar
  13. Frederiksen CS, Zheng X (2000) Chaos, potential predictability and model validation of climate variations. ANZIAM J 42:C608–C626. Google Scholar
  14. Frederiksen CS, Zheng X (2007a) Variability of seasonal-mean fields arising from intraseasonal variability Part 3: application to SH winter and summer circulations. Clim Dyn 28:849–866. doi: 10.1007/s00382-006-0214-9 CrossRefGoogle Scholar
  15. Frederiksen CS, Zheng X (2007b) Coherent structures of interannual variability of the atmospheric circulation: the role of intraseasonal variability. In: Denier J, Frederiksen JS (eds) Frontiers in turbulence and coherent structures. World Scientific Publications, Singapore, pp 87–120CrossRefGoogle Scholar
  16. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302:273–275. doi: 10.1126/science.1087440 CrossRefGoogle Scholar
  17. Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 climate system model. CSIRO atmospheric research technical paper 60, 130 pp.
  18. Grainger S, Frederiksen CS, Zheng X (2008) A method for evaluating the modes of variability in general circulation models. ANZIAM J 50:C399–C412. Google Scholar
  19. Hodson DLR, Sutton RT (2008) Exploring multi-model atmospheric GCM ensembles with ANOVA. Clim Dyn 31:973–986. doi: 10.1007/s00382-008-0372-z CrossRefGoogle Scholar
  20. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  21. Karoly DJ (1989) Southern Hemisphere circulation features associated with El Niño-Southern Oscillation events. J Clim 2:1239–1252. doi: 10.1175/1520-0442(1989)002<1239:SHCFAW>2.0.CO;2 CrossRefGoogle Scholar
  22. Karoly DJ, Plumb RA, Ting M (1989) Examples of the horizontal propagation of quasi-stationary waves. J Atmos Sci 46:2802–2811. doi: 10.1175/1520-0469(1989)046<2802:EOTHPO>2.0.CO;2 CrossRefGoogle Scholar
  23. Kidson JW (1988) Interannual variations in the Southern Hemisphere circulation. J Clim 1:1177–1198. doi: 10.1175/1520-0442(1988)001<1177:IVITSH>2.0.CO;2 CrossRefGoogle Scholar
  24. Kidson JW (1999) Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP-NCAR reanalyses. J Clim 12:2808–2830. doi: 10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2 CrossRefGoogle Scholar
  25. Kiladis GN, Mo KC (1998) Interannual and intraseasonal variability in the Southern Hemisphere. In: Karoly DJ, Vincent DG (eds) Meteorology of the Southern Hemisphere. American Meteorological Society, Boston, pp 307–336Google Scholar
  26. Kinter JL, Fennessy MJ, Krishnamurthy V, Marx L (2004) An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP-NCAR reanalysis. J Clim 17:349–361. doi: 10.1175/1520-0442(2004)017<0349:AEOTAI>2.0.CO;2 CrossRefGoogle Scholar
  27. Kucharski F et al (2009) The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Clim Dyn 33:615–627CrossRefGoogle Scholar
  28. Kumar A, Jha B, Zhang Q, Bounoua L (2007) A new methodology for estimating the unpredictable component of seasonal atmospheric variability. J Clim 20:3888–3901. doi: 10.1175/JCLI4216.1 CrossRefGoogle Scholar
  29. L’Heureux ML, Thompson DWJ (2006) Observed relationships between the El Niño-Southern Oscillation and the extratropical zonal-mean circulation. J Clim 19:276–287. doi: 10.1175/JCLI3617.1 CrossRefGoogle Scholar
  30. Marshall GJ (2003) Trends in the Southern Annular Mode from observations and reanalyses. J Clim 16:4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 CrossRefGoogle Scholar
  31. Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models. J Geophys Res 111:D18101. doi: 10.1029/2005JD006323 CrossRefGoogle Scholar
  32. Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610. doi: 10.1175/1520-0442(2000)013<3599:RBLFV>2.0.CO;2 CrossRefGoogle Scholar
  33. Mo KC, Ghil M (1987) Statistics and dynamics of persistent anomalies. J Atmos Sci 44:877–902. doi: 10.1175/1520-0469(1987)044<0877:SADOPA>2.0.CO;2 CrossRefGoogle Scholar
  34. Mo KC, White GH (1985) Teleconnections in the Southern Hemisphere. Mon Weather Rev 113:22–37. doi: 10.1175/1520-0493(1985)113<0022:TITSH>2.0.CO;2 CrossRefGoogle Scholar
  35. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 CrossRefGoogle Scholar
  36. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146. doi: 10.1007/s003820050009 CrossRefGoogle Scholar
  37. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  38. Renwick JA (1998) ENSO-related variability in the frequency of South Pacific blocking. Mon Weather Rev 126:3117–3123. doi: 10.1175/1520-0493(1998)126<3117:ERVITF>2.0.CO;2 CrossRefGoogle Scholar
  39. Renwick JA (2005) Persistent positive anomalies in the Southern Hemisphere circulation. Mon Weather Rev 133:977–988. doi: 10.1175/MWR2900.1 CrossRefGoogle Scholar
  40. Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical north Africa (1906–92): observations and modelling. Q J R Meteorol Soc 121:669–704. doi: 10.1002/qj.49712152311 Google Scholar
  41. Scaife A et al (2009) The CLIVAR C20C project: selected twentieth century climate events. Clim Dyn 33:603–614. doi: 10.1007/s00382-008-0451-1 CrossRefGoogle Scholar
  42. Sinclair MR (1996) A climatology of anticyclones and blocking for the Southern Hemisphere. Mon Weather Rev 124:245–264. doi: 10.1175/1520-0493(1996)124<0245:ACOAAB>2.0.CO;2 CrossRefGoogle Scholar
  43. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar
  44. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13:1000–1016. doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 CrossRefGoogle Scholar
  45. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  46. Vera C, Silvestri G, Barros V, Carril A (2004) Differences in El Niño response over the Southern Hemisphere. J Clim 17:1741–1753. doi: 10.1175/1520-0442(2004)017<1741:DIENRO>2.0.CO;2 CrossRefGoogle Scholar
  47. Zheng X, Frederiksen CS (2004) Variability of seasonal-mean fields arising from intraseasonal variability: part 1, methodology. Clim Dyn 23:177–191. doi: 10.1007/s00382-004-0428-7 Google Scholar
  48. Zheng X, Straus DM, Frederiksen CS, Grainger S (2009) Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Q J R Meteorol Soc. doi: 10.1002/qj.492
  49. Zhou T et al (2009) The CLIVAR C20C project: which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Clim Dyn 33:1051–1068. doi: 10.1007/s00382-008-0501-8 CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2009

Authors and Affiliations

  • Simon Grainger
    • 1
    Email author
  • Carsten S. Frederiksen
    • 1
  • Xiaogu Zheng
    • 2
    • 3
  • David Fereday
    • 4
  • Chris K. Folland
    • 4
  • Emilia K. Jin
    • 5
    • 6
  • James L. Kinter
    • 5
    • 6
  • Jeff R. Knight
    • 4
  • Siegfried Schubert
    • 7
  • Jozef Syktus
    • 8
  1. 1.Centre for Australian Weather and Climate ResearchBureau of MeteorologyMelbourneAustralia
  2. 2.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand
  3. 3.College of Global Change and Earth SystemBeijing Normal UniversityBeijingChina
  4. 4.Met Office Hadley Centre for Climate ChangeExeterUK
  5. 5.Department of Atmospheric, Oceanic and Earth SciencesGeorge Mason UniversityFairfaxUSA
  6. 6.Center for Ocean-Land-Atmosphere StudiesCalvertonUSA
  7. 7.NASA Goddard Space Flight CenterGreenbeltUSA
  8. 8.Queensland Climate Change Centre of ExcellenceBrisbaneAustralia

Personalised recommendations