Climate Dynamics

, Volume 35, Issue 5, pp 721–740 | Cite as

An atmosphere–ocean regional climate model for the Mediterranean area: assessment of a present climate simulation

  • Vincenzo Artale
  • Sandro Calmanti
  • Adriana Carillo
  • Alessandro Dell’Aquila
  • Marine Herrmann
  • Giovanna Pisacane
  • Paolo M. Ruti
  • Gianmaria Sannino
  • Maria Vittoria Struglia
  • Filippo Giorgi
  • Xunqiang Bi
  • Jeremy S. Pal
  • Sara Rauscher
  • The PROTHEUS Group
Article

Abstract

We present an atmosphere–ocean regional climate model for the Mediterranean basin, called the PROTHEUS system, composed by the regional climate model RegCM3 as the atmospheric component and by a regional configuration of the MITgcm model as the oceanic component. The model is applied to an area encompassing the Mediterranean Sea and compared to a stand-alone version of its atmospheric component. An assessment of the model performances is done by using available observational datasets. Despite a persistent bias, the PROTHEUS system is able to capture the inter-annual variability of seasonal sea surface temperature (SST) and also the fine scale spatio-temporal evolution of observed SST anomalies, with spatial correlation as high as 0.7 during summer. The close inspection of a 10-day strong wind event during the summer of 2000 proves the capability of the PROTHEUS system to correctly describe the daily evolution of SST under strong air–sea interaction conditions. As a consequence of the model’s skill in reproducing observed SST and wind fields, we expect a reliable estimation of air–sea fluxes. The model skill in reproducing climatological land surface fields is in line with that of state of the art regional climate models.

Keywords

Regional climate model Mediterranean Air–sea interaction 

References

  1. Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108(2003):4257–4268CrossRefGoogle Scholar
  2. Adcroft AJ, Hill CN, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293–2315CrossRefGoogle Scholar
  3. Aldrian E, Sein D, Jacob D, Dümenil Gates L, Podzun R (2005) Modeling Indonesian rainfall with a coupled regional model. Clim Dyn 25:1–17CrossRefGoogle Scholar
  4. Alpert, P, Stein U, Tsidulko M (1995) Role of sea fluxes and topography in eastern Mediterranean cyclogenesis. In: The global atmosphere and ocean system, vol 3, pp 55–79Google Scholar
  5. Andersson A, Bakan S, Fennig K, Grassl H, Klepp C-P, Schulz J (2007) Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data—HOAPS-3—monthly mean. World Data Center for Climate, electronic publication. doi:10.1594/WDCC/HOAPS3_MONTHLY
  6. Bergamasco A, Gacic M (1996) Baroclinic response of the Adriatic sea to an episode of bora wind. J Phys Oceanogr 26(7):1354–1369CrossRefGoogle Scholar
  7. Bethoux J (1979) Budgets of the Mediterranean sea. Their dependence on the local climate and on the characteristics of the Atlantic waters. Oceanol Acta 2(2):157–163Google Scholar
  8. Bryden H, Candela J, Kinder T (1994) Exchange through the Strait of Gibraltar. Prog Oceanogr 33:201–248CrossRefGoogle Scholar
  9. Bunker AF, Charnock H, Goldsmith RA (1982) A note on the heat balance of the Mediterranean and Red Seas. J Mar Syst 40:73–84Google Scholar
  10. Buzzi A, Tibaldi S (1978) Cyclogenesis in the lee of the Alps: a case study. Quart J Roy Meteor Soc 104:271 287CrossRefGoogle Scholar
  11. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Clim Change 81:7–30CrossRefGoogle Scholar
  12. Déqué M, Piedelievre JP (1995) High-resolution climate simulation over Europe. Clim Dyn 11:321–339CrossRefGoogle Scholar
  13. Dickinson R, Henderson-Sellers A, Kennedy P (1993) Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. Technical report, National Center for Atmospheric ResearchGoogle Scholar
  14. Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U (2002) The development of the coupled ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192Google Scholar
  15. Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part 1: convective parameterisation. J Atmos Sci 37:1722–1733CrossRefGoogle Scholar
  16. Giorgi F (2006a) Regional climate modeling: status and perspectives. J Phys IV 139:101–118CrossRefGoogle Scholar
  17. Giorgi F (2006b) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734 CrossRefGoogle Scholar
  18. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352CrossRefGoogle Scholar
  19. Giorgi F, Bates G, Nieman S (1993a) The multi-year surface climatology of a regional atmospheric model over the western United States. J Clim 6:75–95CrossRefGoogle Scholar
  20. Giorgi F, Marinucci M, Bates G (1993b) Development of a second generation regional climate model (RegCM2) I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  21. Golnaraghi M, Robinson AR (1994) Dynamical studies of the Eastern Mediterranean circulation. In: Malanotte-Rizzoli P, Rodinson AR (eds) Ocean processes in climate dynamics: global and Mediterranean examples. NATO ASI Series, 419. Kluwer, Dordrecht, pp 395–406Google Scholar
  22. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  23. Holtslag A, de Bruijn E, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  24. Huffman GJ, Adler RF, Morrissey MM et al (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2(1):36–50CrossRefGoogle Scholar
  25. Jackett D, Mcdougall T (1995) Minimal adjustment of hydrographic profiles to achieve static stability. J Atmos Ocean Technol 12(2):381–389CrossRefGoogle Scholar
  26. Jacob D et al (2007) An inter-comparison of regional climate models for Europe: design of the experiments and model performance. Clim Change 81:31–52CrossRefGoogle Scholar
  27. Josey SA (2003) Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation. J Geophys Res 108:3237. doi:10.1029/2003JC001778 CrossRefGoogle Scholar
  28. Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). Technical report NCAR/TN-420+STR, National Center for Atmospheric ResearchGoogle Scholar
  29. Lehmann A, Lorenz P, Jacob D (2004) Modelling the exceptional Baltic Sea inflow events in 2002–2003. Geophys Res Lett 31:L21308. doi:10.1029/2004GL020830 CrossRefGoogle Scholar
  30. Levitus S (1982) Climatological Atlas of the World Ocean. NOAA/ERL GFDL Professional Paper 13, Princeton, NJ, 173 pp (NTISPB83-184093)Google Scholar
  31. Mariotti A, Struglia MV, Zeng N, Lau K-M (2002) The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J Clim 15:1674–1690CrossRefGoogle Scholar
  32. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997a) A finite-volume, incompressible Navier Stokes model for, studies of the ocean on parallel computers. J Geophys Res C Oceans 102(C3):5753–5766CrossRefGoogle Scholar
  33. Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res C Oceans 102(C3):5733–5752CrossRefGoogle Scholar
  34. Marullo S, Buongiorno Nardelli B, Guarracino M, Santoleri R (2007) Observing the Mediterranean Sea from space: 21 years of Pathfinder-AVHRR sea surface temperatures (1985 to 2005): re-analysis and validation. Ocean Sci 3:299–310CrossRefGoogle Scholar
  35. MEDAR Group (2002) Mediterranean and Black Sea database of temperature, salinity and biochemical parameters and climatological atlas [4 CD-ROMs], Ifremer Ed., Plouzane, France. Available at http://www.ifremer.fr/sismer/program/medar/
  36. Meehl GA (1994) Coupled land-ocean-atmosphere processes and South Asian monsoon variability. Science 266:263–267. doi:10.1126/science.266.5183.263 CrossRefGoogle Scholar
  37. Mellor GL (2004) A three-dimensional, primitive equation, numerical ocean model. In: Program in Atmospheric and Oceanic Sciences, Princeton University, PrincetonGoogle Scholar
  38. Mertens C, Schott F (1998) Interannual variability of deep-water formation in the Northwestern Mediterranean. J Phys Oceanogr 28:1410–1424CrossRefGoogle Scholar
  39. Millot C (1999) Circulation in the Western Mediterranean Sea. J Mar Syst 20:423–442CrossRefGoogle Scholar
  40. New M, Lister D, Hulme M, Makin I (2002) A high-resolution data set of surface climate over global land areas. Clim Res 21:1–25CrossRefGoogle Scholar
  41. Pal JS, Small E, Eltahir E (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105(D24):29579–29594CrossRefGoogle Scholar
  42. Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  43. Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2008) Simulation of the Indian monsoon using the RegCM3–ROMS regional coupled model. Clim Dyn. doi:10.1007/s00382-008-0433-3
  44. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2006) UKMO—GISST/MOHMATN4/MOHSST6—Global Ice coverage and SST (1856–2006). UK Meteorological Office. Available from http://badc.nerc.ac.uk/data/gisst/
  45. Reid JL (1979) On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea. Deep-Sea Res 26:1199–1223CrossRefGoogle Scholar
  46. Rinke A, Gerdes R, Dethloff K, Kandlbinder T, Karcher M, Kauker F, Frickenhaus S, Köberle C, Hiller W (2003) A case study of the anomalous Arctic sea ice conditions during 1990: insights from coupled and uncoupled regional climate model simulations. J Geophys Res 108(D9):4275. doi:10.1029/2002JD003146 CrossRefGoogle Scholar
  47. Robinson AR, Golnaraghi M (1993) Circulation and dynamics of the eastern Mediterranean Sea: quasi-synoptic data-driven simulations. Deep-Sea Res II 40:1207–1246CrossRefGoogle Scholar
  48. Robinson AR, Golnaraghi M, Leslie WG, Artegiani A, Hecht A, Lazzoni E, Michelato A, Sansone E, Theocharis A, Unluata U (1991) Structure and variability of the eastern Mediterranean general circulation. Dyn Atmos Oceans 15:215–240CrossRefGoogle Scholar
  49. Roether W, Manca BB, Klein B, Bregant D, Georgopoulos D, Beitzel V, Kovacevic V, Luchetta A (1996) Recent changes in the Eastern Mediterranean deep waters. Science 271(1996):333–335CrossRefGoogle Scholar
  50. Ruti PM, Marullo S, D’Ortenzio F, Tremant M (2008) Comparison of analyzed and measured wind speeds in the perspective of oceanic simulations over the Mediterranean basin: analyses, QuikSCAT and buoy data. J Mar Syst 70:33–48. doi:10.1016/j.jmarsys.2007.02.026 CrossRefGoogle Scholar
  51. Sannino G, Herrmann M, Carillo A, Rupolo V, Ruggiero V, Artale V, Heimbach P (2009) An eddy-permitting model of the Mediterranean Sea with a two-way grid refinement at the Strait of Gibraltar. Ocean Model 30:56–72. doi:10.1061/j.ocemod.2009.06.2002 CrossRefGoogle Scholar
  52. Simmons AJ, Gibson JK (2000) The ERA-40 Project Plan. ERA-40project report series no. 1, ECMWF, p 62Google Scholar
  53. Somot S, Sevault F, Déqué M (2006) Transient climate change scenario simulation of the Mediterranean Sea for the 21st century using a high-resolution ocean circulation model. Clim Dyn 27:851–879. doi:10.1007/s00382-006-0167-z CrossRefGoogle Scholar
  54. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st Century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob Planet Change 63(2–3):112–126Google Scholar
  55. Struglia MV, Mariotti A, Filograsso A (2004) River discharge into the Mediterranean Sea: climatology and aspects of the observed variability. J Clim 17:4740–4751CrossRefGoogle Scholar
  56. Valcke S, Redler R (2006) OASIS3 User guide. PRISM support initiative report no 4, 60 ppGoogle Scholar
  57. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vincenzo Artale
    • 1
  • Sandro Calmanti
    • 1
  • Adriana Carillo
    • 1
  • Alessandro Dell’Aquila
    • 1
  • Marine Herrmann
    • 1
    • 3
  • Giovanna Pisacane
    • 1
  • Paolo M. Ruti
    • 1
  • Gianmaria Sannino
    • 1
  • Maria Vittoria Struglia
    • 1
  • Filippo Giorgi
    • 2
  • Xunqiang Bi
    • 2
  • Jeremy S. Pal
    • 2
    • 4
  • Sara Rauscher
    • 2
  • The PROTHEUS Group
  1. 1.ACS-CLIM MOD, ENEA, Italian National Agency for New Technologies, Energy and the EnvironmentSanta Maria di Galeria, RomeItaly
  2. 2.Abdus Salam ICTPTriesteItaly
  3. 3.CNRM, Météo-FranceToulouseFrance
  4. 4.Loyola Marymount UniversityLos AngelesUSA

Personalised recommendations