Climate Dynamics

, Volume 35, Issue 1, pp 127–142 | Cite as

Evaluation of the WAMME model surface fluxes using results from the AMMA land-surface model intercomparison project

  • Aaron Anthony Boone
  • Isabelle Poccard-Leclercq
  • Yongkang Xue
  • Jinming Feng
  • Patricia de Rosnay


The West African monsoon (WAM) circulation and intensity have been shown to be influenced by the land surface in numerous numerical studies using regional scale and global scale atmospheric climate models (RCMs and GCMs, respectively) over the last several decades. The atmosphere–land surface interactions are modulated by the magnitude of the north–south gradient of the low level moist static energy, which is highly correlated with the steep latitudinal gradients of the vegetation characteristics and coverage, land use, and soil properties over this zone. The African Multidisciplinary Monsoon Analysis (AMMA) has organised comprehensive activities in data collection and modelling to further investigate the significance land–atmosphere feedbacks. Surface energy fluxes simulated by an ensemble of land surface models from AMMA Land-surface Model Intercomparison Project (ALMIP) have been used as a proxy for the best estimate of the “real world” values in order to evaluate GCM and RCM simulations under the auspices of the West African Monsoon Modelling Experiment (WAMME) project, since such large-scale observations do not exist. The ALMIP models have been forced in off-line mode using forcing based on a mixture of satellite, observational, and numerical weather prediction data. The ALMIP models were found to agree well over the region where land–atmosphere coupling is deemed to be most important (notably the Sahel), with a high signal to noise ratio (generally from 0.7 to 0.9) in the ensemble and a inter-model coefficient of variation between 5 and 15%. Most of the WAMME models simulated spatially averaged net radiation values over West Africa which were consistent with the ALMIP estimates, however, the partitioning of this energy between sensible and latent heat fluxes was significantly different: WAMME models tended to simulate larger (by nearly a factor of two) monthly latent heat fluxes than ALMIP. This results due to a positive precipitation bias in the WAMME models and a northward displacement of the monsoon in most of the GCMs and RCMs. Another key feature not found in the WAMME models is peak seasonal latent heat fluxes during the monsoon retreat (approximately a month after the peak precipitation rates) from soil water stores. This is likely related to the WAMME northward bias of the latent heat flux gradient during the WAM onset.


WAM ALMIP AMMA WAMME Monsoon Surface fluxes 



The authors would like to acknowledge the support of the data providers, notably R. Lacaze, B. Geiger, D. Carrer and J.-L. Roujean, who have offered considerable assistance with respect to using the LAND-SAF downwelling radiative flux products. A. Marsouin provided guidance on the OSI-SAF radiation product. We wish to extend our gratitude to the POSTEL Service Centre ( at MEDIAS-France for customising and providing the LSA SAF products. We gratefully acknowledge the European Centre for Medium-Range Weather Forecasts for the use of the ECMWF forecast data. We would like to acknowledge the hard work of the ALMIP Working Group members: G. Balsamo, A. Beljaars, C. Delire, P. Harris, C. Taylor, T. Orgeval, J. Polcher, A. Ducharne, A. Nørgaard, I. Sandholt, S. Gascoin, Y. Gusev, O. Nasonova, S. Saux-Picart, C. Ottle, and B. Decharme, and the WAMME Working Group members. Based on a French initiative, AMMA has been established by an international group and is currently funded by a large number of agencies, especially from France, the UK, and Africa. It has been the beneficiary of a major financial contribution from the European Community’s Sixth Framework Research Programme.


  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P (2003) The Version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  2. Balsamo G, Viterbo P, Beljaars A, van den Hurk B, Hirsch M, Betts A, Scipal K (2009) A revised hydrology for the ECMWF model: verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J Hydrometeorol 10:623–643CrossRefGoogle Scholar
  3. Boone A, Masson V, Meyers T, Noilhan J (2000) The influence of the inclusion of soil freezing on simulations by a soil–vegetation–atmosphere transfer scheme. J Appl Meteorol 9:1544–1569CrossRefGoogle Scholar
  4. Boone A, de Rosnay P, Basalmo G, Beljaars A, Chopin F, Decharme B, Delire C, Ducharne A, Gascoin S, Grippa M, Guichard F, Gusev Y, Harris P, Jarlan L, Kergoat L, Mougin E, Nasonova O, Norgaard A, Orgeval T, Ottlé C, Poccard-Leclercq I, Polcher J, Sandholt I, Saux-Picart S, Taylor C, Xue Y (2009) The AMMA land surface model intercomparison project. Bull Amer Meteorol Soc. doi: 10.1175/2009BAMS2786.1
  5. Charney J, Stone PH, Quirk WJ (1975) Drought in the Sahara: a biogeophysical feedback mechanism. Science 187:434–435CrossRefGoogle Scholar
  6. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modelling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585CrossRefGoogle Scholar
  7. Coudert B, Ottlé C, Boudevillain B, Guillevic P, Demarty J (2006) Contribution of thermal infrared remote sensing data in multi-objective calibration of a dual source SVAT model. J Hydrometeorol 7:404–420CrossRefGoogle Scholar
  8. Cunnington WM, Rowntree PR (1986) Simulations of the Saharan atmosphere—dependence on moisture and albedo. Q J R Meteorol Soc 112:971–999Google Scholar
  9. d’Orgeval T, Polcher J, de Rosnay P (2008) Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes. Hydrol Earth Syst Sci Discuss 5:2251–2292CrossRefGoogle Scholar
  10. Dai Y, Zeng X, Dickinson RE, Baker I, Bonan GB, Bosilovich MG, Denning AS, Dirmeyer PA, Houser PR, Niu G, Oleson KW, Schlosser CA, Yang Z-L (2003) The common land model. Bull Am Meteorol Soc 84:1013–1023CrossRefGoogle Scholar
  11. de Rosnay P, Polcher J, Bruen M, Laval K (2002) Impact of a physically based soil water flow and soil–plant interaction representation for modeling large scale land surface processes. J Geophys Res 107(D11), 4118. doi: 10.1029/2001JD000634
  12. de Rosnay P, Drusch M, Boone A, Balsamo G, Decharme B, Harris P, Kerr Y, Pellarin T, Polcher J, Wigneron JP (2009) Microwave Land Surface modelling evaluation against AMSR-E data over West Africa. The AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model (ALMIP-MEM). J Geophys Res 114, D05108. doi: 10.1029/2008JD010724
  13. Decharme B (2007) Influence of the runoff representation on continental hydrology using the NOAH and the ISBA land surface models. J Geophys Res 112:D19108. doi: 10.1029/2007JD008463 CrossRefGoogle Scholar
  14. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere–Atmosphere Transfer Scheme (BATS) version 1e as coupled to the NCAR Community Climate Model. NCAR Technical Note NCAR/TN-387 + STR, 72Google Scholar
  15. Dirmeyer PA, Zhao M (2004) Flux replacement as a method to diagnose coupled land–atmosphere model feedback. J Hydrometeorol 5:1034–1048CrossRefGoogle Scholar
  16. Dirmeyer PA, Dolman AJ, Sato N (1999) The pilot phase of the Global Soil Wetness Project. Bull Am Meteorol Soc 80:851–878CrossRefGoogle Scholar
  17. Dirmeyer PA, Gao X, Zhao M, Guo Z, Oki T, Hanasaki N (2006) GSWP-2: multimodel analysis and implications for our perception of the land surface. Bull Am Meteorol Soc 87:1381–1397CrossRefGoogle Scholar
  18. Douville H, Chauvin F, Broqua H (2001) Influence of soil moisture on the Asian and African monsoons. Part I: mean monsoon and daily precipitation. J Clim 14:2381–2403CrossRefGoogle Scholar
  19. Douville H, Conil S, Tyteca S, Voldoire A (2007) Soil moisture memory and West African monsoon predictability: artefact or reality? Clim Dyn 28:723–742CrossRefGoogle Scholar
  20. Eltahir EAB, Gong C (1996) Dynamics of wet and dry years in West Africa. J Clim 9:1030–1042CrossRefGoogle Scholar
  21. Essery RLH, Best M, Betts R, Cox P, Taylor CM (2003) Explicit representation of subgrid heterogeneity in a GCM land surface scheme. J Hydrometeorol 4:530–543CrossRefGoogle Scholar
  22. Gao X, Dirmeyer PA (2006) A multimodel analysis, validation, and transferability study of global soil wetness products. J Hydrometeorol 7:1218–1236CrossRefGoogle Scholar
  23. Geiger B, Meurey C, Lajas D, Franchistguy L, Carrer D, Roujean J-L (2008) Near real-time provision of downwelling shortwave radiation estimates derived from satellite observations. Meteorol Appl 15:411–420CrossRefGoogle Scholar
  24. Guo Z, Dirmeyer PA, Koster RD, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C-H, Malyshev S, McAvaney B, McGregor JL, Mitchell K, Mocko D, Oki T, Oleson KW, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2006) GLACE: the global land–atmosphere coupling experiment. Part II: analysis. J Hydrometeorol 7:611–625CrossRefGoogle Scholar
  25. Gusev EM, Nasonova ON, Kovalev EE (2006) Modeling the components of heat and water balance for the land surface of the globe. Water Resour 33:616–627CrossRefGoogle Scholar
  26. Henderson-Sellers A, Pitman A, Love P, Irannejad P, Chen T (1995) The project for intercomparison of land surface parameterization schemes (PILPS): phases 2 and 3. Bull Amer Meteor Soc 76:489–504CrossRefGoogle Scholar
  27. Hourdin F, Guichard F, Favot F, Marquet P, BooneA, Lafore J-P, Redelsperger J-L, Ruti P, Dell’Aquila A, Doval TL, Traore AK, Gallee H (2009) AMMA-Model Intercomparison Project. Bull Am Meteorol Soc (in press)Google Scholar
  28. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55CrossRefGoogle Scholar
  29. Jobard I, Chopin F, Bergés JC, Ali A, Lebel T, Desbois M (2007) Presentation of the EPSAT-SG method and comparison with other satellite precipitation estimations in the frame of Precip-AMMA. Geophysical Research Abstracts, vol 9, 10062, SRef-ID: 1607–7962/gra/EGU2007-A-10062. European Geosciences UnionGoogle Scholar
  30. Kang H–S, Xue Y, Collatz G (2007) Impact assessment of satellite-derived leaf area index datasets using a general circulation model. J Clim 47:993–1013CrossRefGoogle Scholar
  31. Kohler M, Kalthoff N, Kottmeier C (2009) The impact of soil moisture modifications on CBL characteristics in West Africa: a case study from the AMMA campaign. QJR Meteorol Soc (in press). doi: 10.1002/qj.430
  32. Koster RD, Suarez MJ (1996) Energy and water balance calculations in the MOSAIC LSM. NASA Technical Memorandum 104606, 9, 76Google Scholar
  33. Koster RD, Suarez MJ, Ducharne A, Kumar P, Stieglitz M (2000) A catchment-based approach to modeling land surface processes in a GCM—Part 1: model structure. J Geophys Res 105:24809–24822CrossRefGoogle Scholar
  34. Koster RD, Dirmeyer PA, Hahmann AN, Ijpelaar R, Tyahla L, Cox P, Suarez MJ (2002) Comparing the degree of land–atmosphere interaction in four atmospheric general circulation models. J Hydrometeorol 3:363–375CrossRefGoogle Scholar
  35. Koster RD, Guo Z, Dirmeyer PA, Bonan G, Chan E, Cox P, Davies H, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu C-H, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson KW, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue Y, Yamada T (2006) GLACE: the global land–atmosphere coupling experiment. Part I: overview. J Hydrometeorol 7:590–610CrossRefGoogle Scholar
  36. Koster RD, Guo Z, Yang R, Dirmeyer PA, Mitchell K, Puma MJ (2009) On the nature of soil moisture in land surface models. J Clim (in press). doi: 10.1175/2009JCLI2832.1
  37. Laval K, Picon L (1986) Effect of a change of the surface albedo of the sahel on climate. J Atmos Sci 43:2418–2429CrossRefGoogle Scholar
  38. Laws KB, JE Janowiak, GJ Huffman (2004) Verification of rainfall estimates over Africa using RFE, NASA MPA-RT and CMORPH. In: American Meteorological Society 18th Conference on Hydrology, Seattle, WA, January 2004Google Scholar
  39. Li W, Xue Y, Poccard I (2007) Numerical investigation of the impact of vegetation indices on the variability of West African summer monsoon. J Meteorol Soc Jpn 85:363–383CrossRefGoogle Scholar
  40. Masson V, Champeaux J-L, Chauvin F, Meriguet C, Lacaze R (2003) Global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16:1261–1282Google Scholar
  41. Noilhan J, Mahfouf J-F (1996) The ISBA land surface parameterization scheme. Glob Planet Change 13:145–159CrossRefGoogle Scholar
  42. Pan H–L, Mahrt L (1987) Interaction between soil hydrology and boundary layer developments. Boundary Layer Meteorol 38:185–202CrossRefGoogle Scholar
  43. Parker DJ, Thorncroft CD, Burton RR, Diongue-Niang A (2005) Analysis of the African easterly jet, using aircraft observations from the JET2000 experiment. Q J R Meteorol Soc 131:1461–1482CrossRefGoogle Scholar
  44. Philippon N, Fontaine B (2002) The relationship between the Sahelian and previous 2nd Guinean rainy seasons: a monsoon regulation by soil wetness? Ann Geophys 20:575–582CrossRefGoogle Scholar
  45. Redelsperger J-L, Thorncroft CD, Diedhiou A, Lebel T, Parker DJ, Polcher J (2006) African Monsoon Multidisciplinary Analysis: an international research project and field campaign. Bull Am Meteorol Soc 87:1739–1746CrossRefGoogle Scholar
  46. Rosenzweig C, Abramopoulos F (1997) Land-surface model development for the GISS GCM. J Clim 10:2040–2054CrossRefGoogle Scholar
  47. Rowell DP, Blondin C (1990) The influence of soil wetness distribution on short range rainfall forecasting in the West African Sahel. Q J R Meteorol Soc 116:1471–1485CrossRefGoogle Scholar
  48. Schneider U, Fuchs T, Meyer-Christoffer A, Rudolf B (2008) Global precipitation analysis products of the GPCC. Global Precipitation Climatology Centre (GPCC), DWD, Internet Publikation, 1–12Google Scholar
  49. Sellers PJ, Mintz Y, Dalcher A (1986) A simple biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531CrossRefGoogle Scholar
  50. Steiner AL, JS Pal, SA Rauscher, JL Bell, NS Diffenbaugh, A Boone, LC Sloan, F Giorgi (2009) Land surface coupling in a regional climate simulations of the West African monsoon. Clim Dyn. doi  10.1007/s00382-009-0543-6
  51. Sud YC, Fennessy M (1982) A study of the influence of surface albedo on July circulation in semi-arid regions using the GLAS GCM. J Climatol 2:105–125CrossRefGoogle Scholar
  52. Timouk F, L Kergoat, E Mougin, C Lloyd, E Ceschia, P de Rosnay, P Hiernaux, V Demarez (2008) Response of sensible heat flux to water regime and vegetation development in a central Sahelian landscape. J Hydrol 1–43. doi:  10.1016/j.jhydrol.2009.04.022
  53. Walker J, Rowntree PR (1977) The effect of soil moisture on circulation and rainfall in a tropical model. Q J R Meteorol Soc 77:353–378Google Scholar
  54. Xue Y, Shukla J (1996) The influence of land surface properties on Sahel climate. Part II: afforestation. J Clim 9:3260–3275CrossRefGoogle Scholar
  55. Xue Y, Sellers PJ, Kinter JL III, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRefGoogle Scholar
  56. Xue Y, Hutjes RWA, Harding RJ, Claussen M, Prince SD, Lebel T, Lambin EF, Allen SJ, Dirmeyer PA, Oki T (2004) The Sahelian climate. Vegetation, water, humans and the climate: a new perspective on an interactive system. Springer, Heidelberg, pp 59–78Google Scholar
  57. Xue Y, K-M Lau, KH Cook, D Rowell, A Boone, J Feng, T Bruecher, FDe Sales, P Dirmeyer, LM Druyan, A Fink, M Fulakeza, Z Guo, S M Hagos, SS Ibrah, K-M Kim, A Kitoh, A Konare, V Kumar1, P Lonergan, M Pasqui1, I Poccard-Leclercq, N Mahowald, W Moufouma-Okia, P Pegion, JK Schemm, SD Schubert, A Sealy, WM Thiaw, A Vintzileos, EK Vizy, S Williams, M-L C Wu (2009) The West African Monsoon Modeling and Evaluation project (WAMME) and its First Model Intercomparison Experiment. Clim Dyn (under revision)Google Scholar
  58. Zeng N, Neelin J, Lau K-M, Compton J (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286:1537–1540CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Aaron Anthony Boone
    • 1
  • Isabelle Poccard-Leclercq
    • 2
  • Yongkang Xue
    • 3
  • Jinming Feng
    • 3
  • Patricia de Rosnay
    • 4
  1. 1.GAME-CNRM, Météo-FranceToulouseFrance
  2. 2.LETG-GéolittomerUniversité de NantesNantesFrance
  3. 3.University of California at Los AngelesLos AngelesUSA
  4. 4.European Centre for Medium Range Weather ForecastingReadingUK

Personalised recommendations