Climate Dynamics

, Volume 34, Issue 6, pp 891–904 | Cite as

Tidal mixing in the Indonesian Seas and its effect on the tropical climate system

  • Ariane Koch-Larrouy
  • Matthieu Lengaigne
  • Pascal Terray
  • Gurvan Madec
  • Sebastien Masson
Article

Abstract

The sensitivity of the tropical climate to tidal mixing in the Indonesian Archipelago (IA) is investigated using a coupled general circulation model. It is shown that the introduction of tidal mixing considerably improves water masses properties in the IA, generating fresh and cold anomalies in the thermocline and salty and cold anomalies at the surface. The subsurface fresh anomalies are advected in the Indian Ocean thermocline and ultimately surface to freshen the western part of the basin whereas surface salty anomalies are advected in the Leuwin current to salt waters along the Australian coast. The ~0.5°C surface cooling in the IA reduces by 20% the overlying deep convection. This improves both the amount and structure of the rainfall and weakens the wind convergence over the IA, relaxes the equatorial Pacific trade winds and strengthens the winds along Java coast. These wind changes causes the thermocline to be deeper in the eastern equatorial Pacific and shallower in the eastern Indian Ocean. The El Nino Southern Oscillation (ENSO) amplitude is therefore slightly reduced while the Indian Ocean Dipole/Zonal Mode (IODZM) variability increases. IODZM precursors, related to ENSO events the preceding winter in this model, are also shown to be more efficient in promoting an IODZM thanks to an enhanced wind/thermocline coupling. Changes in the coupled system in response tidal mixing are as large as those found when closing the Indonesian Throughflow, emphasizing the key role of IA on the Indo-Pacific climate.

References

  1. Blanke B, Delecluse P (1993) Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388CrossRefGoogle Scholar
  2. Chang P, Yamagata T, Schopf P, Behera SK, Carton J, Kessler WS, Meyers G, Qu T, Schott F, Shetye S (2006) Climate fluctuations of tropical coupled systems—the role of Ocean dynamics. J Clim 19(20):5122CrossRefGoogle Scholar
  3. Clement AC, Seager R, Murtugudde R (2005) Why are there tropical warm pools? J Clim 18:5294–5311CrossRefGoogle Scholar
  4. Cravatte S, Madec G, Izumo T, Menkes C, Bozec A (2007) Progress in the 3-D circulation of the eastern equatorial Pacific in a climate ocean model. Ocean Model 17(1):28–48Google Scholar
  5. Davison AC, Hinkley DV (1997) Bootstrap methods and their application. Cambridge University Press, Cambridge, p 582Google Scholar
  6. Ffield A, Gordon AL (1992) Vertical mixing in the Indonesian Thermocline. J Phys Oceanogr 22(2):184–195. doi:10.1175/1520-0485 Google Scholar
  7. Ffield A, Gordon A (1996) Tidal mixing signatures in the Indonesian seas. J Phys Oceanogr 26:1924–1937Google Scholar
  8. Fieux M, Andrie C, Delecluse P, Ilahude AG, Kartavtseff A, Mantisi F, Molcard R, Swallow JC (1994) Measurement within the Pacific-Indian Ocean throughflow region. Deep-Sea Res I 41:1091–1130CrossRefGoogle Scholar
  9. Fischer AS, Terray P, Guikyardi E, Gualdi S, Delecluse P (2005) Two independent Triggers for the Indian Ocean/zonal Mode in a coupled GCM. J Clim 18:3428–3449CrossRefGoogle Scholar
  10. Gerkema T, Lam F-PA, Maas LRM (2004) Internal tides in the Bay of Biscay: conversion rates and seasonal effects. Deep Sea Res Part II 51:2995–3008CrossRefGoogle Scholar
  11. Gordon AL, McClean J (1999) Thermohaline stratification of the Indonesian Seas, model and observations. J Phys Oceanogr 29:198–216CrossRefGoogle Scholar
  12. Gordon AL, Susanto RD (2001) Banda Sea surface layer divergence. Ocean Dyn 52:2–10CrossRefGoogle Scholar
  13. Gordon AL, Susanto RD, Ffield AL (1999) Throughflow within Makassar Strait. Geophys Res Lett 26:3325–3328CrossRefGoogle Scholar
  14. Gregory D, Rowntree PR (1990) A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Mon Weather Rev 118(7):1483–1506CrossRefGoogle Scholar
  15. Gregory D, Kershaw R, Inness PM (1997) Parametrization of momentum transport by convection. II: tests in single column and general circulation models. Q J R Meteor Soc 123:1153–1183CrossRefGoogle Scholar
  16. Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003) The interannual variability in the Tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582Google Scholar
  17. Hautala S, Reid JL, Bray NA (1996) The distribution and mixing of Pacific water masses in the Indonesian Seas. J Geophys Res 101(C5):12375–12390Google Scholar
  18. Hautala SL, Sprintall J, Potemra JT, Chong JC, Pandoe W, Bray N, Ilahude AG (2001) Velocity structure and transport of the Indonesian Throughflow in the major straits restricting flow into the Indian Ocean. J Geophys Res 106(C9):19527–19546Google Scholar
  19. Hirst AC, Godfrey JS (1993) The role of the Indonesian Throughflow in a global ocean GCM. J Phys Oceanogr 23:1057–1086CrossRefGoogle Scholar
  20. Jochum M, Potemra J (2008) Sensitivity of tropical rainfall to Banda Sea diffusivity in the community climate system model. J Clim 21:6445–6454CrossRefGoogle Scholar
  21. Kamenkovich VM, Burnett WH, Gordon AI, Mellor GL (2003) The Pacific/Indian Ocean pressure difference and its influence on the Indonesian Seas circulation: Part II—the study with specified sea-surface heights. J Mar Res 61(5):613–634CrossRefGoogle Scholar
  22. Koch-Larrouy, Madec G, Bouruet-Aubertot P, Gerkema T, Bessières L, Molcard R (2007) On the transformation of Pacific Water into Indonesian Throughflow water by internal tidal mixing. Geophys Res Lett 34:L04604. doi:10.1029/2006GL028405 CrossRefGoogle Scholar
  23. Koch-Larrouy A, Madec G, Iudicone D, Molcard R, Atmadipoera A (2008a) Quantification of the mixing process in the transformation of water masses in the Indonesian Seas. Ocean Dyn (submitted)Google Scholar
  24. Koch-Larrouy A, Madec G, Blanke B, Molcard R (2008b) Quantification of the water paths and exchanges in the Indonesian archipelago. Ocean Dyn (submitted)Google Scholar
  25. Lau N-C, Nath MJ (2004) Coupled GCM simulation of atmosphere–ocean variability associated with zonally asymmetric SST changes in the tropical Indian Ocean. J Clim 17:245–265CrossRefGoogle Scholar
  26. Lengaigne M, Madec G, Menkes C, Alory G (2003) Impact of isopycnal mixing on the tropical ocean circulation. J Geophys Res 108(C11):3345. doi:10.1029/2002JC001704 Google Scholar
  27. Lengaigne M, Guilyardi E, Boulanger JP, Menkes C, Delecluse P, Inness P, Cole J, Slingo J (2004) Triggering of El Niño by westerly wind events in a coupled general circulation model. Clim Dyn 23:601–620. doi:10.1007/s00382-004-0457-2 CrossRefGoogle Scholar
  28. Lengaigne M, Boulanger JP, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19:1850–1868. doi:10.1175/JCLI3706.1 CrossRefGoogle Scholar
  29. Li T, Wang B, Chang CP, Zhang Y (2003) A theory for the Indian Ocean dipole-zonal mode. J Atmos Sci 60:2119–2135CrossRefGoogle Scholar
  30. Lin JL (2007) The Double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean–atmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  31. Luo J-J, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South Pacific origin of the decadal ENSO-like variationas simulated by a coupled GCM. Geophys Res Lett 30(24):2250. doi:10.1029/2003GL018649 CrossRefGoogle Scholar
  32. Luo J-J, Masson S, Behera S, Yamagata T (2007) Experimental forecasts of Indian Ocean Dipole using a coupled OAGCM. J Clim 20(10):2178–2190CrossRefGoogle Scholar
  33. Lyard F et al (2002) Energy budget of the tidal hydrodynamic model fes99. In: C. Le Provosts’ talk: “Ocean tides after a decade of high precision satellite altimetry”, SWT Jason 1, Arles, 2003Google Scholar
  34. Madec G (2008) “NEMO reference manual, ocean dynamics component: NEMO-OPA. Preliminary version”. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619Google Scholar
  35. Madec G, Delecluse P, Imbard M, Lévy C (1998) OPA 8.1 Ocean general circulation model reference manual. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 11, 91 ppGoogle Scholar
  36. Meng X, Wu D, Hu R, Lan J (2004) The interdecadal variation of Indonesian Throughflow and its mechanism. Chin Sci Bull 2004 49(19):2058–2067CrossRefGoogle Scholar
  37. Meyers G, Bailey RJ, Worby AP (1995) Geostrophic transport of Indonesian throughflow. Deep-Sea Res Part I 42:1163–1174CrossRefGoogle Scholar
  38. Molcard RM, Fieux M, Syamsudin F (2001) The throughflow within Ombai Strait. Deep-Sea Res I 48:1237–1253CrossRefGoogle Scholar
  39. Murray SP, Arief D (1988) Throughflow into the Indian Ocean through the Lombok Strait, January 1985–January 1986. Nature 333:444–447CrossRefGoogle Scholar
  40. Murtugudde R, Busalacchi AJ, Beauchamp J (1998) Seasonal-to-interannual effects of the Indonesian throughflow on the tropical Indo-Pacific Basin. J Geophys Res 103(21):425–441Google Scholar
  41. Murtugudde R, McCreary J, Busalacchi AJ (2000) Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–98. J Geophys Res 105:3295–3306CrossRefGoogle Scholar
  42. Neale R, Slingo J (2003) The maritime continent and its role in the global climate: AGCM study. J Clim 16:834–848CrossRefGoogle Scholar
  43. Nordeng TE (1994) Extended versions of the convective parameterization scheme at ECMWF and their impact on the mean and transient activity of the model in the tropics, Tech. Memo. 206. Eur. Cent. for Medium-Range Weather Forecasts, Reading, UKGoogle Scholar
  44. Pope V, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model: HadAM3. Clim Dyn 16:123–146CrossRefGoogle Scholar
  45. Potemra JT, Schneider N (2005) Influence of low-frequency Indonesian throughflow transport on temperatures in the Indian Ocean in a coupled model. J Clim (submitted)Google Scholar
  46. Potemra JT, Lukas R, Mitchum GT (1997) Large scale estimation of transport from the Pacific to the Indian Ocean. J Geophys Res 102:27795–27812CrossRefGoogle Scholar
  47. Robertson R, Ffield A (2005) M2 baroclinic tides in the Indonesian Seas. Oceanogr 18:62–73Google Scholar
  48. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. PART I: Model description. MPI-Report 349Google Scholar
  49. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2004) The atmospheric general circulation model ECHAM5 Part II: Sensitivity of simulated climate to horizontal and vertical resolution. Max Planck Institute for Meteorology, Report No. 354Google Scholar
  50. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363Google Scholar
  51. Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. In: Hamilton K, Ohfuchi W (eds) High resolution numerical modelling of the atmosphere and ocean, chapter 10. Springer, New York, pp 157–185 CrossRefGoogle Scholar
  52. Schiller A (2004) Effects of explicit tidal forcing in an OGCM on the water-mass structure and circulation in the Indonesian throughflow region. Ocean Model 6(1):31–49CrossRefGoogle Scholar
  53. Schiller A, Fiedler R (2007) Explicit tidal forcing in an ocean general circulation model. Geophys Res Lett 34:L03611. doi:10.1029/2006GL028363
  54. Schiller A, Godfrey JS, McIntosh PC, Meyers G, Wijffels SE (1998) Seasonal near-surface dynamics and thermodynamics of the Indian Ocean and Indonesian Throughflow in a global ocean circulation model. J Phys Oceanogr 28:2288–2312CrossRefGoogle Scholar
  55. Schneider N (1998) The Indonesian Throughflow and the global climate system. J Clim 11:676–689CrossRefGoogle Scholar
  56. Song Q, Gordon AL (2004) Significance of the vertical profile of the Indonesian Throughflow transport to the Indian Ocean. Geophys Res Lett 31:L16307. doi:10.1029/2004GL020360 CrossRefGoogle Scholar
  57. Song Q, Vecchi GA, Rosati AJ (2007) The role of the Indonesian Throughflow in the Indo-Pacific climate variability in the GFDL coupled climate model. J Clim 20(11):2434CrossRefGoogle Scholar
  58. Spencer H, Slingo JM (2003) The simulation of peak and delayed ENSO teleconnections. J Clim 16(11):1757–1774CrossRefGoogle Scholar
  59. Sprintall J, Wijffels S, Molcard R, Jaya I (2008) Transport variability in the exit passages of the Indonesian Throughflow. J Geophys Res (submitted)Google Scholar
  60. St. Laurent LC, Simmons HL, Jayne SR (2002) Estimates of tidally driven enhanced mixing in the Deep Ocean. Geophys Res Lett 29:101029Google Scholar
  61. Susanto RD, Gordon AL (2005) Velocity and transport of the Makassar Strait Throughflow. J Geophys Res 110, Jan C01005. doi:10.1029/2004JC002425
  62. Terray P, Chauvin F, Douville H (2007) Impact of southeast Indian Ocean sea surface temperature anomalies on monsoon-ENSO-dipole variability in a coupled ocean/atmosphere model. Clim Dyn 28(6):553CrossRefGoogle Scholar
  63. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  64. Timmermann R, Goosse H, Madec G, Fichefet T, Ethe C, Duliere V (2005) On the representation of high latitude processes in the ORCA-LIM global coupled sea–ice–ocean model. Ocean Modell 8(2005):175–201CrossRefGoogle Scholar
  65. Valcke S (2006) OASIS3 user guide (prism_2-5). PRISM support initiative report No 3, 64 ppGoogle Scholar
  66. Valcke S, Terray L, Piacentini A (2000) Oasis 2.4, Ocean atmosphere sea ice soil: user’s guide. Technical report TR/CMGC/00/10, CERFACS, Toulouse, FranceGoogle Scholar
  67. Vialard J, Menkes C, Boulanger J-P, Delecluse P, Guilyardi E, McPhadenet MJ, Madec G (2001) Oceanic mechanisms driving the SST during the 1997–1998 El Niño. J Phys Oceanogr 31:1649–1675CrossRefGoogle Scholar
  68. Wajsowicz RC, Schneider EK (2001) The Indonesian throughflow’s effect on global climate determined from the COLA coupled climate system. J Clim 14:3029–3042CrossRefGoogle Scholar
  69. Wang B (1995) Interdecadal changes in El Nino onset in the last four decades. J Clim 8:267–285CrossRefGoogle Scholar
  70. Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ariane Koch-Larrouy
    • 1
  • Matthieu Lengaigne
    • 1
  • Pascal Terray
    • 1
  • Gurvan Madec
    • 1
    • 2
  • Sebastien Masson
    • 1
  1. 1.Laboratoire d’Océanographie et du Climat: Expérimentation et Approches Numériques (CNRS/IRD/UPMC/MNHN), case 100Université Pierre et Marie CurieParis Cedex 05France
  2. 2.National Oceanographic, CentreSouthamptonUK

Personalised recommendations