Advertisement

Climate Dynamics

, Volume 35, Issue 7–8, pp 1191–1205 | Cite as

Future changes in Central Europe heat waves expected to mostly follow summer mean warming

  • Joan Ballester
  • Xavier Rodó
  • Filippo Giorgi
Article

Abstract

Daily output from the PRUDENCE ensemble of regional climate simulations for the end of the twentieth and twenty-first centuries over Europe is used to show that the increasing intensity of the most damaging summer heat waves over Central Europe is mostly due to higher base summer temperatures. In this context, base temperature is defined as the mean of the seasonal cycle component for those calendar days when regional heat waves occur and is close, albeit not identical, to the mean temperature for July–August. Although 36–47% of future Central Europe July and August days at the end of the twenty-first century are projected to be extreme according to the present day climatology, specific changes in deseasonalized heat wave anomalies are projected to be relatively small. Instead, changes in summer base temperatures appear much larger, clearly identifiable and of the same order of magnitude as changes in the whole magnitude of heat waves. Our results bear important consequences for the predictability of central European heat wave intensity under global warming conditions.

Keywords

Climate change Heat wave Regional Climate Model Multi-model ensemble Temperature seasonal cycle Deseasonalized temperature anomalies 

Notes

Acknowledgments

J.B. acknowledges support from the European Science Foundation (Exchange grant, Ref. 1464), the Catalan Ministry of University and Research and the support by the Spanish Ministry of Science through the PANDORA project. Climate simulations have been provided through the PRUDENCE data archive, funded by the EU through contract EVK2-CT2001-00132. We also acknowledge the observed dataset from the EU-FP6 project ENSEMBLES (http://www.ensembles-eu.org) and the data providers in the ECA&D project (http://eca.knmi.nl).

References

  1. Alexander LV, Arblaster JM (2008) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol. doi: 10.1002/joc.1730
  2. Ballester J, Douville H, Chauvin F (2009) Present-day climatology and projected changes of warm and cold days in the CNRM-CM3 global climate model. Clim Dyn 32:35–54CrossRefGoogle Scholar
  3. Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn 26:489–511CrossRefGoogle Scholar
  4. Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:L02202. doi: 10.1029/2003GL018857 CrossRefGoogle Scholar
  5. Beniston M, Diaz HF (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob Planet Change 44:73–81CrossRefGoogle Scholar
  6. Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59:217–223CrossRefGoogle Scholar
  7. Box JE, Rinke A (2002) Evaluation of Greenland ice sheet surface climate in the HIRHAM Regional Climate Model using automatic weather station data. J Clim 16:1302–1319Google Scholar
  8. Christensen JH, Carter TR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147CrossRefGoogle Scholar
  9. Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of Regional Climate Models: the PRUDENCE project. Clim Change 81:1–6CrossRefGoogle Scholar
  10. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi: 10.1029/2008GL035694 CrossRefGoogle Scholar
  11. Clark RT, Brown SJ, Murphy JM (2006) Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435CrossRefGoogle Scholar
  12. DeGaetano AT, Allen RJ (2002) Trends in twentieth-century temperature extremes across the United States. J Clim 15:3188–3205CrossRefGoogle Scholar
  13. Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70CrossRefGoogle Scholar
  14. Dhainaut JF, Claessens YE, Ginsburg C, Riou B (2004) Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit Care 8:1–2CrossRefGoogle Scholar
  15. Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192Google Scholar
  16. Ellis FP, Princé HP, Lovatt G, Whittington RM (1980) Mortality and morbidity in Birmingham during the 1976 heatwave. Q J Med 49:1–8Google Scholar
  17. Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216CrossRefGoogle Scholar
  18. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi: 10.1029/2006GL029068 CrossRefGoogle Scholar
  19. Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Change 20:327–339Google Scholar
  20. Giorgi F (2006a) Climate change hot-spots. Geophys Res Lett 33:L08707. doi: 10.1029/2006GL025734 CrossRefGoogle Scholar
  21. Giorgi F (2006b) Regional climate modelling: status and perspectives. J Phys IV 139:101–118CrossRefGoogle Scholar
  22. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modelling revisited. J Geophys Res 104:6549–6562CrossRefGoogle Scholar
  23. Giorgi F, Bi X, Pal JS (2004a) Means, trends and interannual variability in a regional climate change experiment over Europe. Part I: present day climate (1961–1990). Clim Dyn 22:733–756CrossRefGoogle Scholar
  24. Giorgi F, Bi X, Pal JS (2004b) Means, trends and interannual variability in a regional climate change experiment over Europe. Part II: future climate scenarios (2071–2100). Clim Dyn 23:839–858CrossRefGoogle Scholar
  25. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New MA (2007) European daily high-resolution gridded dataset of surface temperature and precipitation. Available online from http://www.ensembles-eu.org/
  26. Hudson DA, Jones RG (2002) Simulations of present-day and future climate over southern Africa using HadAM3H. Hadley Centre Technical Note no 38, Met Office, Exeter, UKGoogle Scholar
  27. IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  28. Jacob DA (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  29. Jones PD, Lister DH (2002) The daily temperature record for St. Petersburg (1743–1996). Clim Change 53:253–267CrossRefGoogle Scholar
  30. Jones PD, Horton EB, Folland CK, Hulme M, Parker DE, Basnett TA (1999) The use of indices to identify changes in climatic extremes. Clim Change 42:131–149CrossRefGoogle Scholar
  31. Jones CG, Ullerstig A, Willén U, Hansson U (2004) The Rossby Centre regional atmospheric climate model (RCA). Part I: model climatology and performance characteristics for present climate over Europe. Ambio 33:199–210Google Scholar
  32. Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302CrossRefGoogle Scholar
  33. Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C (2007) Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Change 81:249–265CrossRefGoogle Scholar
  34. Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model developments. KNMI Technical Report 252Google Scholar
  35. Mathieu PP, Sutton RT, Dong B, Collins M (2004) Predictability of winter climate over the North Atlantic European Region during ENSO events. J Clim 17:1953–1974CrossRefGoogle Scholar
  36. Mearns LO, Katz RW, Schneider SH (1984) Extreme high temperature events: changes in their probabilities with changes in mean temperature. J Appl Meteorol 23:1601–1613CrossRefGoogle Scholar
  37. Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 13:994–997CrossRefGoogle Scholar
  38. Meehl GA, Karl T, Easterling DR, Changnon S, Peelke R Jr, et al (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81: 413–416Google Scholar
  39. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42CrossRefGoogle Scholar
  40. Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317CrossRefGoogle Scholar
  41. Pfister C, Brázdil R, Glaser R, Barriendos M, Camuffo D, Deutsch M, Dobrovolný P, Enzi S, Guidoboni E, Kotyza O, Militzer S, Rácz L, Rodrigo FS (1999) Documentary evidence on climate in sixteenth-century Europe. Clim Change 43:55–110CrossRefGoogle Scholar
  42. Rodó X, Pascual M, Fuchs G, Faruque ASG (2002) ENSO and cholera: a nonstationary link related to climate change? PNAS 99:12901–12906CrossRefGoogle Scholar
  43. Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Clim 12:3004–3032CrossRefGoogle Scholar
  44. Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro A (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180CrossRefGoogle Scholar
  45. Sartor F, Snacken R, Demuth C, Walckiers D (1995) Temperature, ambient ozone levels, and mortality during summer, 1994, in Belgium. Environ Res 70:105–113CrossRefGoogle Scholar
  46. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336CrossRefGoogle Scholar
  47. Schwartz J (2005) Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology 16:67–72CrossRefGoogle Scholar
  48. Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96CrossRefGoogle Scholar
  49. Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614CrossRefGoogle Scholar
  50. Tanser FC, Sharp B, le Sueur D (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362:1792–1798CrossRefGoogle Scholar
  51. Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79:185–211CrossRefGoogle Scholar
  52. Vidale PL, Lüthi D, Frei C, Seneviratne S, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108, D18 4586. doi: 10.1029/2002JD002810
  53. Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288CrossRefGoogle Scholar
  54. WHO (2004) Heat waves: risks and responses (Health and Global Environmental Change, Series No. 2)Google Scholar
  55. Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Change 53:355–392CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Institut Català de Ciències del Clima (IC3)BarcelonaSpain
  2. 2.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations