Advertisement

Climate Dynamics

, Volume 34, Issue 1, pp 1–26 | Cite as

Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution

  • Olivier Marti
  • P. Braconnot
  • J.-L. Dufresne
  • J. Bellier
  • R. Benshila
  • S. Bony
  • P. Brockmann
  • P. Cadule
  • A. Caubel
  • F. Codron
  • N. de Noblet
  • S. Denvil
  • L. Fairhead
  • T. Fichefet
  • M.-A. Foujols
  • P. Friedlingstein
  • H. Goosse
  • J.-Y. Grandpeix
  • E. Guilyardi
  • F. Hourdin
  • A. Idelkadi
  • M. Kageyama
  • G. Krinner
  • C. Lévy
  • G. Madec
  • J. Mignot
  • I. Musat
  • D. Swingedouw
  • C. Talandier
Article

Abstract

This paper presents the major characteristics of the Institut Pierre Simon Laplace (IPSL) coupled ocean–atmosphere general circulation model. The model components and the coupling methodology are described, as well as the main characteristics of the climatology and interannual variability. The model results of the standard version used for IPCC climate projections, and for intercomparison projects like the Paleoclimate Modeling Intercomparison Project (PMIP 2) are compared to those with a higher resolution in the atmosphere. A focus on the North Atlantic and on the tropics is used to address the impact of the atmosphere resolution on processes and feedbacks. In the North Atlantic, the resolution change leads to an improved representation of the storm-tracks and the North Atlantic oscillation. The better representation of the wind structure increases the northward salt transports, the deep-water formation and the Atlantic meridional overturning circulation. In the tropics, the ocean–atmosphere dynamical coupling, or Bjerknes feedback, improves with the resolution. The amplitude of ENSO (El Niño-Southern oscillation) consequently increases, as the damping processes are left unchanged.

Keywords

Climate Simulations Ocean Atmosphere Coupling Circulation El Niño/Southern oscillation North-Atlantic oscillation Storm-tracks Resolution Coupling 

Notes

Acknowledgments

We thank all the people at Institut Pierre Simon Laplace, Institut d’Astronomie Georges Lemaître and Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique who participate to the development of the model components, the assembling of the climate model, and the development of compilation, running and post-processing environments. Computer time was provided by Centre National de la Recherche Scientifique and Commissariat à l’Energie Atomique. This work is a contribution to the European project ENSEMBLES (Project no. GOCE-CT-2003-505539) and to the French project MissTerre (LEFE-EVE). The authors wish to acknowledge use of the Ferret program for analysis and graphics in this paper. Ferret is a product of NOAA’s Pacific Marine Environmental Laboratory (information is available at http://ferret.pmel.noaa.gov/Ferret).

References

  1. Alkama R, Kageyama M, Ramstein G (2006) Freshwater discharges in a simulation of the Last Glacial Maximum climate using improved river routing. Geophys Res Let 33(21)Google Scholar
  2. Andrich P (1988) OPA—a multitasked ocean general circulation model—reference manual. LODYC, Université Paris VI, France, p 60Google Scholar
  3. Ball JT, Woodrow TE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. Prog Photosynth 4:221–224Google Scholar
  4. Barkstrom BR (1984) The Earth radiation budget experiment (ERBE). Bull Am Met Soc 65:1170–1185CrossRefGoogle Scholar
  5. Beckman A (1998) The representation of bottom boundary layer processes in numerical ocean circulation models. In: Chassignet EP, Verron J (eds) Ocean modeling and parametrization. Kluwer, NorwellGoogle Scholar
  6. Boning CW, Holland WR, Bryan FO, Danabasoglu G, Mcwilliams JC (1995) An overlooked problem in model simulations of the thermohaline circulation and heat-transport in the Atlantic-Ocean. J Clim 8(3):515–523CrossRefGoogle Scholar
  7. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J Atmos Sci 58(21):3,158–3183CrossRefGoogle Scholar
  8. Bourke RH, McLaren AS (1992) Contour mapping of Arctic basin ice draft and roughness parameters. J Geophy Res-Oceans 97(C11):17715–17728CrossRefGoogle Scholar
  9. Braconnot P (1998) Tests de sensibilité avec le modèle d’atmosphère du LMD en vue d’améliorer le couplage avec l’océan, note technique IPSL 0076, IPSL, p 39Google Scholar
  10. Braconnot P, Marti O (2003) Impact of precession on monsoon characteristics from coupled ocean atmosphere experiments: changes in Indian monsoon and Indian ocean climatology. Mar Geol 201(1–3):23–34CrossRefGoogle Scholar
  11. Braconnot P, Marti O, Joussaume S (1997) Adjustment and feedbacks in a global coupled ocean–atmosphere model. Clim Dyn 13(7–8):507–519CrossRefGoogle Scholar
  12. Braconnot P, Joussaume S, Marti O, de Noblet N (1999) Synergistic feedbacks from ocean and vegetation on the African monsoon response to mid-Holocene insolation. Geophys Res Lett 26(16):2481–2484CrossRefGoogle Scholar
  13. Braconnot P, Joussaume S, Marti O, de Noblet N (2000) Impact of ocean and vegetation feedback on 6 ka monsoon changes. Third PMIP Workshop, La Huardière, Canada, WCRPGoogle Scholar
  14. Braconnot P, Hourdin F, Bony S, Dufresne J-L, Grandpeix J-Y, Marti O (2007a) Impact of different convective cloud schemes on the simulation of the tropical seasonal cycle in a coupled ocean–atmosphere model. Clim Dyn 29:501–520. doi: 10.1007/s00382-007-0244-y CrossRefGoogle Scholar
  15. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laine A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007b) Results of PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum. Part 1. Experiments and large-scale features. Clim Past 3(2):261–277Google Scholar
  16. Bryden HL, Imawaki S (2001) Ocean heat transport. In: Siedler G, Church JA, Gould J (eds) Ocean circulation and climate: observing and modelling the global ocean. Academic Press, San Diego, pp 445–474Google Scholar
  17. Collatz GJ, Ribas-Carbo M, Berry JA (1992) Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust J Plant Physiol 19(5):519–538CrossRefGoogle Scholar
  18. Cunningham SA, Alderson SG, King BA, Brandon MA (2003) Transport and variability of the Antarctic circumpolar current in drake passage. J Geophys Res-Oceans 108(C5). doi: 10.1029/2001JC001147
  19. de Boyer Montégut CD, Madec G, Fischer AS, Lazar A, Iudicone D (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. J Geophys Res-Oceans 109(C12). doi: 10.1029/2004JC002378
  20. DeWeaver E, Bitz CM (2006) Atmospheric circulation and its effect on Arctic sea ice in CCSM3 simulations at medium and high resolution. J Clim 19(11):2415–2436CrossRefGoogle Scholar
  21. Dong BW, Valdes PJ (2000) Climates at the last glacial maximum: Influence of model horizontal resolution. J Clim 13(9):1554–1573CrossRefGoogle Scholar
  22. Ducoudré N, Laval K, Perrier A (1993) SECHIBA, a new set of parameterizations of the hydrologic exchanges at the land–atmosphere interface within the LMD atmospheric general circulation model. J Clim 6:248–273CrossRefGoogle Scholar
  23. Dufresne J-L, Grandpeix J-Y (1996), Raccordement des modèles thermodynamiques de glace, d’océan et d’atmosphère, Note Interne 205, Laboratoire de Métérologie DynamiqueGoogle Scholar
  24. Dufresne JL, Friedlingstein P, Berthelot M, Bopp L, Ciais P, Fairhead L, Le Treut H, Monfray P (2002) On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys Res Lett 29(10). doi: 10.1029/2001GL013777
  25. Dufresne JL, Quaas J, Boucher O, Denvil S, Fairhead L (2005) Contrasts in the effects on climate of anthropogenic sulfate aerosols between the 20th and the 21st century. Geophys Res Lett 32(21). doi: 10.1029/2005GL023619
  26. Eichelberger SJ, Hartmann DL (2007) Zonal jet structure and the leading mode of variability. J Clim 20(20):5149–5163CrossRefGoogle Scholar
  27. Emanuel KA (1991) The theory of Hurricanes. Ann Rev Fluid Mech 23:179–196CrossRefGoogle Scholar
  28. Farquhar GD, Caemmerer SV, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C-3 species. Planta 149(1):78–90CrossRefGoogle Scholar
  29. Fedorov AV (2007) Net energy dissipation rates in the tropical ocean and ENSO dynamics. J Clim 20(6):1108–1117CrossRefGoogle Scholar
  30. Fichefet T, Morales-Maqueda AM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102(6):12609–12646CrossRefGoogle Scholar
  31. Fichefet T, Morales-Maqueda AM (1999) Modelling the influence of snow accumulation and snow–ice formation on the seasonal cycle of the Antarctic sea–ice cover. Clim Dyn 15(4):251–268CrossRefGoogle Scholar
  32. Filiberti M-A, Dufresne J-L, Grandpeix J-Y (2001) Reference manual for IGLOO sea ice model. Note technique du Pôle de modélisation, Institut Pierre-Simon Laplace, 35 ppGoogle Scholar
  33. Fouquart Y, Bonnel B (1980) Computations of solar heating of the Earth’s atmosphere: a new parametrization. Contrib Atmos Phys 53:35–62Google Scholar
  34. Friedlingstein P, Bopp L, Ciais P, Dufresne JL, Fairhead L, LeTreut H, Monfray P, Orr J (2001) Positive feedback between future climate change and the carbon cycle. Geophys Res Lett 28(8):1543–1546CrossRefGoogle Scholar
  35. Ganachaud A, Wunsch C (2000) Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature 408(23 November):453–457CrossRefGoogle Scholar
  36. Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transport during the World ocean circulation experiment. J Clim 16:696–705CrossRefGoogle Scholar
  37. Gloersen P, Campbell WJ (1991) Recent variations in Arctic and Antarctic sea–ice covers. Nature 352:33–36CrossRefGoogle Scholar
  38. Guilyardi E (2006) El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26(4):329–348CrossRefGoogle Scholar
  39. Guilyardi E, Madec G, Terray L (2001) The role of lateral ocean physics in the upper ocean thermal balance of a coupled ocean–atmosphere GCM. Clim Dyn 17(8):589–599CrossRefGoogle Scholar
  40. Guilyardi E, Gualdi S, Slingo JM, Navarra A, Delecluse P, Cole J, Madec G, Roberts M, Latif M, Terray L (2004) Representing El Niño in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17(24):4623–4629CrossRefGoogle Scholar
  41. Hack JJ, Caron JM, Danabasoglu G, Oleson KW, Bitz C, Truesdale JE (2006a) CCSM-CAM3 climate simulation sensitivity to changes in horizontal resolution. J Clim 19(11):2267–2289CrossRefGoogle Scholar
  42. Hack JJ, Caron JM, Yeager SG, Oleson KW, Holland MM, Truesdale JE, Rasch PJ (2006b) Simulation of the global hydrological cycle in the CCSM community atmosphere model version 3 (CAM3): mean features. J Clim 19(11):2199–2221CrossRefGoogle Scholar
  43. Hagemann S, Dumenil L (1998) A parametrization of the lateral waterflow for the global scale. Clim Dyn 14(1):17–31CrossRefGoogle Scholar
  44. Hibler WDI (1979) A dynamic thermodynamic sea ice model. J Phys Oceanogr 9:815–846CrossRefGoogle Scholar
  45. Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59(6):1041–1061CrossRefGoogle Scholar
  46. Hourdin F, Issartel JP, Cabrit B, Idelkadi A (1999) Reciprocity of atmospheric transport of trace species. Comptes Rendus de L’Académie des Sciences, Serie II, Fascicule a, Sciences de la Terre et des Planètes 329(9):623–628Google Scholar
  47. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, Levan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813CrossRefGoogle Scholar
  48. IPCC (2007) Climate change 2007—the physical science basis, contribution of working group I to the fourth assessment report of the IPCC. IPCC, Geneva, 981 ppGoogle Scholar
  49. Jakobsson M, Cherkis NZ, Woodward J, Macnab R, Coakley B (2000) New grid of Arctic bathymetry aids scientists and mapmakers. EOS Trans 81(9):89, 93, 96Google Scholar
  50. Jones PW (1999) First- and second-order conservative remapping schemes for grid in spherical coordinates. Mont Weath Rev 127(9):2204–2210CrossRefGoogle Scholar
  51. Kageyama M, Valdes PJ, Ramstein G, Hewitt C, Wyputta U (1999) Northern hemisphere storm tracks in present day and last glacial maximum climate simulations: a comparison of the European PMIP models. J Clim 12(3):742–760CrossRefGoogle Scholar
  52. Kageyama M, Peyron O, Pinot S, Tarasov P, Guiot J, Joussaume S, Ramstein G (2001) The last glacial maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Clim Dyn 17(1):23–43CrossRefGoogle Scholar
  53. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Met Soc 77(3):437–471CrossRefGoogle Scholar
  54. Khodri M, Cane MA, Kukla G, Gavin J, Braconnot P (2005) The impact of precession changes on the Arctic climate during the last interglacial–glacial transition. Earth Planet Sci Lett 236(1–2):285–304CrossRefGoogle Scholar
  55. Krinner G, Genthon C, Li Z-X, Le Van P (1997) Studies of the Antarctic climate with a stretched-grid general circulation model. J Geophys Res 102:13731–13745CrossRefGoogle Scholar
  56. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere–biosphere system. Glob Biogeochem Cycle 19(1). doi: 10.1029/2003GB002199
  57. L’Heveder B (1999) Variabilité saisonnière et interannuelle des glaces de mer en Arctique: influence des interactions avec l’atmosphère. Ph.D., Paris VI, pp 132Google Scholar
  58. Le Clainche Y (1996) Modélisation du ruissellement dans un modèle couplé, Tech. rep., LSCE, SaclayGoogle Scholar
  59. Le Treut H, Li Z-X (1991) Sensitivity of an atmospheric general circulation model to prescribed SST changes: feedback effect associated with the simulation of the cloud optical properties. Clim Dyn 5:175–187Google Scholar
  60. Levitus S (1982) Climatological atlas of the world ocean, 13. NOAA/ERL GFDL, Washington, p 173Google Scholar
  61. Lott F (1997) The transient emission of propagating gravity waves by a stably stratified shear layer. Quart J Roy Met Soc 123(542):1603–1619CrossRefGoogle Scholar
  62. Lott F (1999) Alleviation of stationary biases in a GCM through a mountain drag parameterization scheme and a simple representation of mountain lift forces. Mont Weath Rev 127(5):788–801CrossRefGoogle Scholar
  63. Lythe MB, Vaughan DG (2001) BEDMAP: a new ice thickness and subglacial topographic model of Antarctica. J Geophys Res–Solid Earth 106:11335–11351CrossRefGoogle Scholar
  64. MacDonald A (1998) The global ocean: a hydrographic estimate and regional analysis. Prog Oceanogr 41:281–382CrossRefGoogle Scholar
  65. Madec G, Imbard M (1996) A global ocean mesh to overcome the North Pole singularity. Clim Dyn 12(6):381–388CrossRefGoogle Scholar
  66. Madec G, Delecluse P, Imbard M, Levy C (1997) OPA version 8.1 Ocean general circulation model reference manual, 3. LODYC, Technical Report, 91 ppGoogle Scholar
  67. Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne JL, Fairhead L, Filiberti M-A, Foujols M-A, Fichefet T, Friedlingstein P, Goosse H, Grandpeix JY, Hourdin F, Krinner G, Lévy C, Madec G, Musat I, de Noblet N, Polcher J, Talandier C (2005) The new IPSL climate system model: IPSL-CM4, Note du Pôle de Modélisation 26. Institut Pierre Simon Laplace, Paris, p 84Google Scholar
  68. Meehl GA, Covey C, Delworth TL, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Met Soc 88(9):1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  69. Morcrette JJ, Smith L, Fouquart Y (1986) Pressure and temperature dependence of the absorption in longwave radiation parametrizations. Contrib Atmos Phys 59(4):455–469Google Scholar
  70. Murray RJ (1996) Explicit generation of orthogonal grids for ocean models. J Comput Phys 126:251–273CrossRefGoogle Scholar
  71. Navarra A, Gualdi S, Masina S, Behera S, Luo JJ, Masson S, Guilyardi E, Delecluse P, Yamagata T (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21(4):730–750CrossRefGoogle Scholar
  72. Ngo-Duc T, Polcher J, Laval K (2005) A 53-year forcing data set for land surface models. J Geophys Res (Atm) 110(D6). doi: 10.1029/2004JD005434
  73. Philip S, Van Oldenborgh GJ (2006) Shifts in ENSO coupling processes under global warming. Geophys Res Let 33(11). doi: 10.1029/2006GL026196
  74. Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the last glacial maximum: comparison of paleoclimate modeling intercomparison project (PMIP) simulations and paleodata. Clim Dyn 15(11):857–874CrossRefGoogle Scholar
  75. Polcher J, McAvaney B, Viterbo P, Gaertner MA, Hahmann A, Mahfouf JF, Noilhan J, Phillips T, Pitman A, Schlosser CA, Schulz JP, Timbal B, Verseghy D, Xue Y (1998) A proposal for a general interface between land surface schemes and general circulation models. Glob Planet Change 19(1–4):261–276CrossRefGoogle Scholar
  76. Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J Clim 17(19):3728–3744CrossRefGoogle Scholar
  77. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC,Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res-Atmospheres 108(D14). doi: 10.1029/2002JD002670
  78. Reynolds RW (1988) A real time global sea-surface temperature analysis. J Clim 1:75–86CrossRefGoogle Scholar
  79. Roullet G, Madec G (2000) Salt conservation, free surface, and varying levels: a new formulation for ocean general circulation models. J Geophys Res (Oceans) 105(10):23927–23942CrossRefGoogle Scholar
  80. Russell J, Stouffer RJ, Dixon KW (2006) Intercomparison of the Southern Ocean circulations in IPCC coupled control simulations. J Clim 19:4560–4575CrossRefGoogle Scholar
  81. Sadourny R, Laval K (1984) January and July performance of the LMD general circulation model. New perspectives in climate modelling, developments in atmospheric science. In: Berger AL, Nicolis C (eds). 16:173–198Google Scholar
  82. Smith WHF, Sandwell DT (1997) Global sea-floor topography from satellite altimetry and ship depth souding. Science 277:1952–1956CrossRefGoogle Scholar
  83. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 14(9):2079–2087CrossRefGoogle Scholar
  84. Stommel H (1961) Thermohaline convection with 2 stable regimes of flow. Tellus 13(2):224–230CrossRefGoogle Scholar
  85. Sun DZ, Zhang T, Covey C, Klein SA, Collins WD, Hack JJ, Kiehl JT, Meehl GA, Held IM, Suarez M (2006) Radiative and dynamical feedbacks over the equatorial cold tongue: results from nine atmospheric GCMs. J Clim 19(16):4059–4074CrossRefGoogle Scholar
  86. Swingedouw D, Braconnot P, Marti O (2006) Sensitivity of the Atlantic meridional overturning circulation to the melting from northern glaciers in climate change experiments. Geophys Res Lett 33(7). doi: 10.1029/2006GL025765
  87. Swingedouw D, Braconnot P, Delecluse P, Guilyardi E, Marti O (2007) The impact of global freshwater forcing on the thermohaline circulation: adjustment of North Atlantic convection sites in a CGCM. Clim Dyn 28(2–3):291–305Google Scholar
  88. Talley LD, Reid JL, Robbins PE (2003) Data-based meridional overturning streamfunctions for the global ocean. J Clim 16(19):3213–3226CrossRefGoogle Scholar
  89. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res-Atmospheres 106(D7):7183–7192CrossRefGoogle Scholar
  90. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mont Weath Rev 117:1179–1800Google Scholar
  91. Timmermann R, Goosse H, Madec G, Fichefet T, Ethé C, Dulière V (2004) On the representation of high latitude processes in the ORCA-LIM global coupled sea ice–ocean model. Ocean Mod 8(1–2):175–201Google Scholar
  92. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443CrossRefGoogle Scholar
  93. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Quart J Roy Met Soc 131(612):2961–3012CrossRefGoogle Scholar
  94. Valcke S (2006), OASIS3 user guide (prism_2-5), PRISM support initiative 3, 68 ppGoogle Scholar
  95. Van Leer B (1977) Towards the ultimate conservative difference scheme: IV a new approach to numerical convection. J Comput Phys 23:276–299CrossRefGoogle Scholar
  96. Verant S, Laval K, Polcher J, De Castro M (2004) Sensitivity of the continental hydrological cycle to the spatial resolution over the Iberian Peninsula. J Hydrometeorol 5(2):267–285CrossRefGoogle Scholar
  97. Wijffels SE, Schmitt RW, Bryden HL, Stigebrandt A (1992) Transport of fresh-water by the Oceans. J Phys Oceanogr 22(2):155–162CrossRefGoogle Scholar
  98. Wunsch C (2005) The total meridional heat flux and its oceanic and atmospheric partition. J Clim 18(21):4374–4380CrossRefGoogle Scholar
  99. Xie PP, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Met Soc 78(11):2539–2558CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Olivier Marti
    • 1
  • P. Braconnot
    • 1
  • J.-L. Dufresne
    • 2
  • J. Bellier
    • 1
  • R. Benshila
    • 5
  • S. Bony
    • 2
  • P. Brockmann
    • 1
  • P. Cadule
    • 6
  • A. Caubel
    • 1
  • F. Codron
    • 2
  • N. de Noblet
    • 1
  • S. Denvil
    • 6
  • L. Fairhead
    • 2
  • T. Fichefet
    • 4
  • M.-A. Foujols
    • 6
  • P. Friedlingstein
    • 1
  • H. Goosse
    • 4
  • J.-Y. Grandpeix
    • 2
  • E. Guilyardi
    • 5
  • F. Hourdin
    • 2
  • A. Idelkadi
    • 1
  • M. Kageyama
    • 1
  • G. Krinner
    • 7
  • C. Lévy
    • 5
  • G. Madec
    • 5
  • J. Mignot
    • 5
  • I. Musat
    • 2
  • D. Swingedouw
    • 3
  • C. Talandier
    • 5
  1. 1.IPSL/LSCEunité mixte CEA-CNRS-UVSQGif-sur-Yvette CedexFrance
  2. 2.IPSL/LMDUnité mixte CNRS-Ecole Polytechnique-ENS-UPCMParis Cedex 05France
  3. 3.CNRS/CERFACSToulouseFrance
  4. 4.Institut d’Astronomie et de Géophysique Georges LemaîtreUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.IPLS/LOCEANunité mixte CNRS-IRD-UPMCParis Cedex 05France
  6. 6.Institut Pierre Simon Laplace des Sciences de l’Environnement (IPSL)Paris Cedex 05France
  7. 7.LGGEUnité mixte CNRS-UJF GrenobleSaint-Martin-d’HèresFrance

Personalised recommendations