Climate Dynamics

, Volume 35, Issue 7–8, pp 1477–1492 | Cite as

Influence of the Andes Mountains on South American moisture transport, convection, and precipitation

  • Nadja InselEmail author
  • Christopher J. Poulsen
  • Todd A. Ehlers


Mountain ranges are known to have a first-order control on mid-latitude climate, but previous studies have shown that the Andes have little effect on the large-scale circulation over South America. We use a limited-domain general circulation model (RegCM3) to evaluate the effect of the Andes on regional-scale atmospheric dynamics and precipitation. We present experiments in which Andean heights are specified at 250 m, and 25, 50, 75, and 100% of their modern values. Our experiments indicate that the Andes have a significant influence on moisture transport between the Amazon Basin and the central Andes, deep convective processes, and precipitation over much of South America through mechanical forcing of the South American low-level jet (LLJ) and topographic blocking of westerly flow from the Pacific Ocean. When the Andes are absent, the LLJ is absent and moisture transport over the central Andes is mainly northeastward. As a result, deep convection is suppressed and precipitation is low along the Andes. Above 50% of the modern elevation, a southward flowing LLJ develops along the eastern Andean flanks and transports moisture from the tropics to the subtropics. Moisture drawn from the Amazon Basin provides the latent energy required to drive convection and precipitation along the Andean front. Large northerly moisture flux and reduced low-level convergence over the Amazon Basin leads to a reduction in precipitation over much of the basin. Our model results are largely consistent with proxy evidence of Andean climate change, and have implications for the timing and rate of Andean surface uplift.


Climate dynamics Uplift South America Regional modeling Andes 



Support for this research was provided by grants to C. Poulsen and T. Ehlers from the University of Michigan’s Graham Environmental Sustainability Institute and from the US National Science Foundation (EAR Award 0738822). We thank two anonymous reviewers for constructive comments on the manuscript.


  1. Aceituno P (1988) On the functioning of the Southern oscillation in the South American sector. Part I: surface climate. Mon Weather Rev 116:505–524CrossRefGoogle Scholar
  2. Allmendinger RW, Jordan TE, Kay SM, Isacks BL (1997) The evolution of the Altiplano-Puna plateau of the Central Andes. Annu Rev Earth Planet Sci 25:139–174CrossRefGoogle Scholar
  3. Alonso RN, Jordan TE, Tabbutt KT, BVandervoort DS (1991) Giant evaporite belts of the Neogene central Andes. Geology 19:401–404CrossRefGoogle Scholar
  4. Alpers CN, Brimhall GH (1988) Middle Miocene climate change in the Atacama Desert, northern Chile: evidence from supergene mineralization at La Escondida. Geol Soc Am Bull 100:1640–1656CrossRefGoogle Scholar
  5. Barnes JB, Ehlers TA, McQuarrie N, O’Sullivan PB, Tawackoli S (2008) Thermochronometer record of central Andean plateau growth, Bolivia (19.5S). Tectonics 27:TC3003. doi: 10.1029/2007TC002174 CrossRefGoogle Scholar
  6. Berbery EH, Collini EA (2000) Springtime precipitation and water vapor flux over southeastern South America. Mon Weather Rev 128:1328–1346CrossRefGoogle Scholar
  7. Broccoli AJ, Manabe S (1992) The effects of orography on midlatitude Northern Hemisphere dry climates. J Clim 5:1181–1201CrossRefGoogle Scholar
  8. Campetella CM, Vera CS (2002) The influence of the Andes Mountains on the South American low-level flow. Geophys Res Lett 29(17):1826. doi: 10.1029/2002GL015451 CrossRefGoogle Scholar
  9. Chou SC, Tanajura CAS, Xue Y, Nobre CA (2002) Validation of the coupled Eta/SSiB model over South America. J Geophys Res 107(D20):8088. doi: 10.1029/2000JD000270 CrossRefGoogle Scholar
  10. Colinvaux PA, Oliveira PE (2001) Amazon plant diversity and climate through the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:51–63CrossRefGoogle Scholar
  11. Cook KH, Vizy EK (2008) Effects of twenty-first-century climate change on the Amazon rain forest. J Clim 21:542–560CrossRefGoogle Scholar
  12. de Goncalves LGG, Shuttleworth WJ, Nijssen B, Burke EJ, Marengo JA, Chou SC, Houser P, Toll DL (2006) Evaluation of model-derived and remotely sensed precipitation products for continental South America. J Geophys Res 111:D16113. doi: 10.1029/2005JD006276 CrossRefGoogle Scholar
  13. DeMaria M (1985) Linear response of a stratified tropical atmosphere to convective forcing. J Atmos Sci 42:1944–1959CrossRefGoogle Scholar
  14. DeSales F, Xue Y (2006) Investigation of seasonal prediction of the South American regional climate using the nested model system. J Geophys Res 111:D20107. doi: 10.1029/2005JD006989 CrossRefGoogle Scholar
  15. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-Atmosphere Transfer Scheme (BATS) version 1E as coupled to the NCAR Community Climate Model NCAR technical report TN-397 + STR, p 72Google Scholar
  16. Ehlers T, Poulsen CJ (2009) Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet Sci Lett 281:238–248CrossRefGoogle Scholar
  17. Eltahir EA, Bras RL (1994) Precipitation recycling in the Amazon basin. Quat J R Meteorol Soc 120:861–880CrossRefGoogle Scholar
  18. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  19. Enfield DB (1996) Relationship of inter-American rainfall to tropical Atlantic and Pacific SST variability. Geophys Res Lett 23:3305–3308CrossRefGoogle Scholar
  20. Figueroa SN, Satyamurty P, Silva-Dias PL (1995) Simulations of the summer circulation over the South American region with an eta coordinate model. J Atmos Sci 52:1573–1584CrossRefGoogle Scholar
  21. Gandu AW, Geisler JE (1991) A primitive equations model study of the effect of topography on the summer circulation over tropical South America. J Atmos Sci 48:1822–1836CrossRefGoogle Scholar
  22. Garreaud R (1999) Multiscale analysis of the summertime precipitation over the Central Andes. Mon Weather Rev 127:901–921CrossRefGoogle Scholar
  23. Garreaud RD (2000) Intraseasonal variability of moisture and rainfall over the South American Altiplano. Mon Weather Rev 128:3337–3346CrossRefGoogle Scholar
  24. Garreaud RD, Aceituno P (2001) Interannual Rainfall Variability over the South American Altiplano. J Clim 14:2779–2789CrossRefGoogle Scholar
  25. Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano; observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194:5–22CrossRefGoogle Scholar
  26. Garzione CN, Molnar P, Libarkin J, MacFadden B (2006) Rapid late Miocene rise of the Bolivian Altiplano: evidence for removal of mantle lithosphere. Earth Planet Sci Lett 241:543–556CrossRefGoogle Scholar
  27. Giorgi F, Marinucci MR (1996) An investigation of the sensitivity of simulated precipitation to model resolution and its implication for climate studies. Mon Weather Rev 124:148–166CrossRefGoogle Scholar
  28. Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second-generation regional climate model (RegCM2). Part I. Boundary-layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  29. Giorgi F, Marinucci MR, Bates GT, De Canio G (1993b) Development of a second-generation regional climate model (RegCM2). Part II. Convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832CrossRefGoogle Scholar
  30. Gosh P, Garzione C, Eiler J (2006) Rapid uplift of the Altiplano revealed through 13C–18O bonds in paleosol carbonates. Science 311:511–515CrossRefGoogle Scholar
  31. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parametrizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  32. Grell GA, Dudhia J, Stauffer DR (1994) Description of the fifth generation PennState/NCAR Mesoscale Model (MM5). NCAR technical report TN-398 + STR, p 121Google Scholar
  33. Hoke GD, Isacks BL, Jordan TE, Yu JS (2004) Groundwater-sapping origin for the giant quebradas of northern Chile. Geology 32:605–608CrossRefGoogle Scholar
  34. Hoorn C (2006) The birth of a mighty Amazon. Scientific American 294:52–59CrossRefGoogle Scholar
  35. Hoorn C, Paxton CGM, Crampton WGR, Burgess P, Marshall LG, Lundberg JG, Rasanen ME, Linna AM (1996) Miocene deposits in the Amazonian foreland basin. Science 273:122–125CrossRefGoogle Scholar
  36. Horel JD, Hahmann AN, Geisler JE (1989) An investigation of the annual cycle of convective activity over the tropical Americas. J Clim 2:1388–1403CrossRefGoogle Scholar
  37. Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231CrossRefGoogle Scholar
  38. Kleeman R (1989) A modeling study of the effect of the Andes on the summertime circulation of tropical South America. J Atmos Sci 46:3344–3362CrossRefGoogle Scholar
  39. Kleinert K, Strecker MR (2001) Climate change in response to orographic barrier uplift; Paleosol and stable isotope evidence from the late Neogene Santa Maria Basin, northwestern Argentina. Geol Soc Am Bull 113:728–742CrossRefGoogle Scholar
  40. Kutzbach JE, Guetter PJ, Ruddiman WF, Prell WL (1989) Sensitivity of climate to late Cenozoic uplift in southern Asia and the American West; numerical experiments. J Geophys Res 94:18393–18407CrossRefGoogle Scholar
  41. Lenters JD, Cook KH (1995) Simulation and diagnosis of the regional summertime precipitation climatology of South America. J Clim 8:2988–3005CrossRefGoogle Scholar
  42. Lenters JD, Cook KH (1997) On the origin of the Bolivian high and related circulation features of the South American climate. J Atmos Sci 54:656–677CrossRefGoogle Scholar
  43. Lenters JD, Cook KH (1999) Summertime precipitation variability over South America: role of the large-scale circulation. Mon Weather Rev 127:409–431CrossRefGoogle Scholar
  44. McQuarrie N, Barnes JB, Ehlers TA (2008) Geometric, kinematic, and erosional history of the central Andean Plateau, Bolivia (15–17S). Tectonics 27:TC3007. doi: 10.1029/2006TC002054 CrossRefGoogle Scholar
  45. NOAA/NESDIS/NCDC (2003) Global–The Global Historical Climatology Network Precipitation (GHCN). http://gov.noaa.nosa:Global-GHCN-Precipitation
  46. Nogues-Paegle J, Mo KC (1997) Alternating wet and dry conditions over South America during summer. Mon Weather Rev 125:279–291CrossRefGoogle Scholar
  47. Nogues-Paegle J, Mo KC, Paegle J (1998) Predictability of the NCEP-NCAR reanalysis model during austral summer. Mon Weather Rev 126:3135–3152CrossRefGoogle Scholar
  48. Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world—The ICPT RegCM and RegCNET. Bull Am Meteorol Soc 88:1395–1409CrossRefGoogle Scholar
  49. Rasanen ME, Linna AM, Santos JC, Negri FR (1995) Late Miocene tidal deposits in the Amazonian foreland basin. Science 269:386–390CrossRefGoogle Scholar
  50. Rech JA, Currie BS, Michalski G, Cowan AM (2006) Neogene climate change and uplift in the Atacama Desert, Chile. Geology 34:761–764CrossRefGoogle Scholar
  51. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  52. Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211CrossRefGoogle Scholar
  53. Rojas M, Seth A (2003) Simulation and sensitivity in a nested modeling system for South America. Part II. GCM boundary forcing. J Clim 16:2454–2471CrossRefGoogle Scholar
  54. Rutllant J, Ulriksen P (1979) Boundary-layer dynamics of the extremely arid Northern part of Chile. Boundary Layer Meteorol 17:41–55CrossRefGoogle Scholar
  55. Salio P, Nicolini M, Saulo C (2002) Chaco low-level jet events characterization during the austral summer season. J Geophys Res 107(D24):4816. doi: 10.1029/2001JD001315 CrossRefGoogle Scholar
  56. Schwerdtfeger W (1961) Stroemungs- und Temperaturfeld der freien Atmosphere ueber den Anden. Meteorol Rdsch 14:1–6Google Scholar
  57. Seth A, Giorgi F (1998) The effects of domain choice on summer precipitation simulation and sensitivity in a regional climate model. J Clim 11:2698–2712CrossRefGoogle Scholar
  58. Seth A, Rojas M (2003) Simulation and sensitivity in a nested modeling system for South America. Part I. Reanalysis boundary forcing. J Clim 16:2437–2453CrossRefGoogle Scholar
  59. Seth A, Rauscher SA, Camargo SJ, Qian J-H, Pal JS (2006) RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields. Clim Dynamics 28:461–480CrossRefGoogle Scholar
  60. Silva-Dias PL, Schubert WH, DeMaria M (1983) Large-scale response of the tropical atmosphere to transient convection. J Atmos Sci 40:2689–2707CrossRefGoogle Scholar
  61. Starck D, Anzotegui L (2001) The late-Miocene climate change—persistence of a climate signal through the orogenic stratigraphic record in northwestern Argentina. J S Am Earth Sci 14:763–774CrossRefGoogle Scholar
  62. Strecker MR, Alonso RN, Bookhagen B, Carrapa B, Hilley GE, Sobel ER, Trauth MH (2007) Tectonics and climate of the southern Central Andes. Annu Rev Earth Planet Sci 35:747–787CrossRefGoogle Scholar
  63. Uba CE, Heubeck C, Hulka C (2005) Facies analysis and basin architecture of the Neogene Subandean synorogenic wedge, southern Bolivia. Sediment Geol 180:91–123CrossRefGoogle Scholar
  64. Uba CE, Heubeck C, Hulka C (2006) Evolution of the late Cenozoic Chaco foreland basin, southern Bolivia. Basin Res 18:145–170CrossRefGoogle Scholar
  65. USGS (1996) GTOPO30.
  66. van der Hammen T, Hooghiemstra H (2000) Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742CrossRefGoogle Scholar
  67. Vandervoort DS, Jordan TE, Zeitler PK, Alonso RN (1995) Chronology of internal drainage development and uplift, southern Puna plateau, Argentine Central Andes. Geology 23:145–148CrossRefGoogle Scholar
  68. Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P, Saulo C, Silva-Dias PL, Zipser E (2006) The South American low-level jet experiment. Bull Am Meteorol Soc 87:63–77CrossRefGoogle Scholar
  69. Virji H (1981) A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon Weather Rev 109:599–610CrossRefGoogle Scholar
  70. Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. Int J Climatol 19:1579–1600CrossRefGoogle Scholar
  71. Wang H, Fu R (2002) Cross-equatorial flow and seasonal cycle of precipitation over South America. J Clim 15:1591–1608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Nadja Insel
    • 1
    Email author
  • Christopher J. Poulsen
    • 1
  • Todd A. Ehlers
    • 1
    • 2
  1. 1.Department of Geological SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Institut für GeowissenschaftenUniversität TübingenTübingenGermany

Personalised recommendations