Climate Dynamics

, Volume 35, Issue 6, pp 965–975 | Cite as

Polar night vortex breakdown and large-scale stirring in the southern stratosphere

  • Alvaro de la Cámara
  • C. R. Mechoso
  • K. Ide
  • R. Walterscheid
  • G. Schubert
Article

Abstract

The present paper examines the vortex breakdown and large-scale stirring during the final warming of the Southern Hemisphere stratosphere during the spring of 2005. A unique set of in situ observations collected by 27 superpressure balloons (SPBs) is used. The balloons, which were launched from McMurdo, Antarctica, by the Stratéole/VORCORE project, drifted for several weeks on two different isopycnic levels in the lower stratosphere. We describe balloon trajectories and compare them with simulations obtained on the basis of the velocity field from the GEOS-5 and NCEP/NCAR reanalyses performed with and without VORCORE data. To gain insight on the mechanisms responsible for the horizontal transport of air inside and outside the well-isolated vortex we examine the balloon trajectories in the framework of the Lagrangian properties of the stratospheric flow. Coherent structures of the flow are visualized by computing finite-time Lyapunov exponents (FTLE). A combination of isentropic analysis and FTLE distributions reveals that air is stripped away from the vortex’s interior as stable manifolds eventually cross the vortex’s edge. It is shown that two SPBs escaped from the vortex within high potential vorticity tongues that developed in association with wave breaking at locations along the vortex’s edge where forward and backward FTLE maxima approximately intersect. The trajectories of three SPBs flying as a group at the same isopycnic level are examined and their behavior is interpreted in reference to the FTLE field. These results support the concept of stable and unstable manifolds governing transport of air masses across the periphery of the stratospheric polar vortex.

Keywords

Stratospheric polar vortex dynamics Vortex breakdown Large-scale stirring Finite-time Lyapunov exponents Hyperbolic manifolds 

References

  1. Reinecker MM et al (2007a) The GEOS-5 data assimilation system: a documentation of GEOS-5.0, in Tech. Rep. 104606 V27, NASA. Internal communicationGoogle Scholar
  2. Beron-Vera FJ, Brown MG, Olascoaga MJ, Rypina II, Koçak H, Udovychenkov IA (2008) Zonal jets as transport barriers in planetary atmosphere. J Atmos Sci 65:3316–3326CrossRefGoogle Scholar
  3. Boccara G, Hertzog A, Basdevant C, Vial F (2008a) Accuracy of NCEP/NCAR reanalyses and ECMWF analyses in the lower stratosphere over Antarctica in 2005. J Geophys Res. doi:10.1029/2008JD010116
  4. Boccara G, Hertzog A, Vincent RA, Vial F (2008b) Estimation of gravity-momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. 1: theory and simulations. J Atmos Sci 65:3042–3055CrossRefGoogle Scholar
  5. Bowman KP (1993) Large-scale isentropic properties of the Antarctic polar vortex from analyzed winds. J Geophys Res 98:23013–23027CrossRefGoogle Scholar
  6. Bowman KP (1996) Rossby wave phase speeds and mixing barriers in the stratosphere. Part I: observations. J Atmos Sci 53:905–916CrossRefGoogle Scholar
  7. Bowman KP, Pan LL, Campos T, Gao R (2007) Observations of fine-scale transport structure in the upper troposphere from the high-performance instrumented airborne platform for environmental research. J Geophys Res 112:D18111. doi:10.1029/2007JD008685 CrossRefGoogle Scholar
  8. Charlton AJ, O’Neill A, Lahoz WA, Berrisford P (2005) The splitting of the stratospheric polar vortex in the Southern Hemisphere, September 2002: dynamical evolution. J Atmos Sci 62:590–602CrossRefGoogle Scholar
  9. d’Ovidio F, Fernández V, Hernández-García E, López C (2004) Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys Res Lett 31:L17203. doi:10.1029/2004GL020328
  10. Dritschel DG, McIntyre ME (2008) Multiple jets as PV staircases: the Phillips effect on the resilience of eddy-transport barriers. J Atmos Sci 65:855–874CrossRefGoogle Scholar
  11. Dvorkin Y, Paldor N, Basdevant C (2001) Reconstructing balloon trajectories in the tropical stratosphere with a hybrid model using analysed fields. Q J R Meteorol Soc 127:975–988CrossRefGoogle Scholar
  12. Farman JC, Gardiner BG, Shanklin JD (1985) Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature 315:207–210CrossRefGoogle Scholar
  13. Haller G (2002) Lagrangian coherent structures from approximate velocity data. Phys Fluids 14:1851–1861CrossRefGoogle Scholar
  14. Haller G, Poje AC (1998) Finite time transport in aperiodic flows. Phys D 119:352–380CrossRefGoogle Scholar
  15. Hertzog A, Vial F, Mechoso CR, Basdevant C, Cocquerez P (2002) Quasi-Lagrangian measurements in the lower stratosphere reveal an energy peak associated with near-inertial waves. Geophys Res Lett 29:1229. doi:10.1029/2001GL014083 Google Scholar
  16. Hertzog A, Basdevant C, Vial F, Mechoso CR (2004) The accuracy of stratospheric analyses in the Northern Hemisphere inferred from long-duration balloon flights. Q J R Meteorol Soc 130:607–626CrossRefGoogle Scholar
  17. Hertzog A, Cocquerez P, Basdevant C, Boccara G, Bordereau J, Brioit B, Cardonne A, Guilbon R, Ravissot A, Schmitt E, Valdivia JN, Venel S, Vial F (2007) Strateole/VORCORE—long-duration, superpressure balloons to study the Antarctic lower stratosphere during the 2005 winter. J Atmos Oceanic Technol 24:2048–2061CrossRefGoogle Scholar
  18. Hertzog A, Boccara G, Vincent RA, Vial F (2008) Estimation of gravity–momentum flux and phase speeds from quasi-Lagrangian stratospheric balloon flights. 2: results from the VORCORE campaign in Antarctica. J Atmos Sci 65:3056–3070CrossRefGoogle Scholar
  19. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Quart J R Meteorol Soc 111:877–946CrossRefGoogle Scholar
  20. Joseph B, Legras B (2002) Relation between kinematic boundaries, stirring, and barriers for the Antarctic polar vortex. J Atmos Sci 59:1198–1212CrossRefGoogle Scholar
  21. Juckes NM, McIntyre ME (1987) A high-resolution one-layer model of breaking planetary waves in the stratosphere. Nature 328:590–596CrossRefGoogle Scholar
  22. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  23. Koh T-Y, Legras B (2002) Hyperbolic lines and the stratospheric polar vortex. Chaos 12:382–394CrossRefGoogle Scholar
  24. Koh T-Y, Plumb RA (2000) Lobe dynamics applied to barotropic Rossby-wave breaking. Phys Fluids 12:1518–1528CrossRefGoogle Scholar
  25. Legras B, Pisso I, Berthet G, Lefèver F (2005) Variability of the Lagrangian turbulent diffusion in the lower stratosphere. Atmos Chem Phys 5:1605–1622CrossRefGoogle Scholar
  26. Lehahn Y, d’Ovidio F, Léyy M, Heifetz E (2007) Stirring of the northeast Atlantic spring bloom: a Lagrangian analysis based on multisatellite data. J Geophys Res 112:C08005. doi:10.1029/2006JC003927 CrossRefGoogle Scholar
  27. Mariotti A, Mechoso CR, Legras B, Daniel V (2000) The evolution of the ozone “collar” in the Antarctic lower stratosphere during early August 1994. J Atmos Sci 57:402–414CrossRefGoogle Scholar
  28. Mechoso CR, O’Neill A, Pope VD, Farrara JD (1988) A study of the stratospheric final warming of 1982 in the southern hemisphere. Q J R Meteorol Soc 114:1365–1384CrossRefGoogle Scholar
  29. Newman PA (1986) The final warming and the polar vortex disappearance during the Southern Hemisphere spring. Geophys Res Lett 13:1228–1231CrossRefGoogle Scholar
  30. Polvani LM, Plumb RA (1992) Rossby wave breaking, microbreaking, filamentation and secondary vortex formation: the dynamics of a perturbed vortex. J Atmos Sci 49:462–476CrossRefGoogle Scholar
  31. Rypina II, Brown MG, Beron-Vera FJ, Koçak H, Olascoaga MJ, Udovydchenkov IA (2007a) On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J Amos Sci 64:3595–3610Google Scholar
  32. Rypina II, Brown MG, Beron-Vera FJ, Koçak H, Olascoaga MJ, Udovydchenkov IA (2007b). Robust tranport barriers resulting from strong Kolmogorov–Arnold–Moser stability. Phys Rev Lett 98:104102. doi:10.1103/PhysRevLett.98.104102
  33. Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D 212:271–304CrossRefGoogle Scholar
  34. Trounday B, Perthuis L, Strebelle S, Farrara JD, Mechoso CR (1995) Dispersion properties of the flow in the southern stratosphere during winter and spring. J Geophys Res 100:13901–13917CrossRefGoogle Scholar
  35. Vial F, Hertzog A, Mechoso CR, Basdevant C, Cocquerez P, Dubourg V, Nouel F (2001) A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons, 1: planetary scales. J Geophys Res 106:22725–22743CrossRefGoogle Scholar
  36. Waugh DW, Abraham ER (2008) Stirring in the global surface ocean. Geophys Res Lett 35:L20605. doi:10.1029/2008GL035526
  37. Waugh DW, Plumb RA (1994) Contour advection with surgery: a technique for investigating finescale structure in tracer transport. J Atmos Sci 51:530–540CrossRefGoogle Scholar
  38. Yamazaki K, Mechoso CR (1985) Observations of the final warming in the stratosphere of the Southern Hemisphere during 1979. J Atmos Sci 42:1198–1205CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Alvaro de la Cámara
    • 1
    • 2
  • C. R. Mechoso
    • 2
  • K. Ide
    • 2
    • 3
  • R. Walterscheid
    • 4
  • G. Schubert
    • 5
  1. 1.Departamento de Geofísica y MeteorologíaUniversidad Complutense de MadridMadridSpain
  2. 2.Department of Atmospheric and Oceanic SciencesUniversity of CaliforniaLos AngelesUSA
  3. 3.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollage ParkUSA
  4. 4.Space Sciences DepartmentThe Aerospace CorporationLos AngelesUSA
  5. 5.Department of Earth and Space Sciences, Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations