Climate Dynamics

, Volume 35, Issue 1, pp 29–43 | Cite as

A multi-model approach to the Atlantic Equatorial mode: impact on the West African monsoon

  • T. Losada
  • B. Rodríguez-Fonseca
  • S. Janicot
  • S. Gervois
  • F. Chauvin
  • P. Ruti


This paper is focused on the West African anomalous precipitation response to an Atlantic Equatorial mode whose origin, development and damping resembles the observed one during the last decades of the XXth century. In the framework of the AMMA-EU project, this paper analyses the atmospheric response to the Equatorial mode using a multimodel approach with an ensemble of integrations from 4 AGCMs under a time varying Equatorial SST mode. The Guinean Gulf precipitation, which together with the Sahelian mode accounts for most of the summer West African rainfall variability, is highly coupled to this Equatorial Atlantic SST mode or Atlantic Niño. In a previous study, done with the same models under 1958–1997 observed prescribed SSTs, most of the models identify the Equatorial Atlantic SST mode as the one most related to the Guinean Gulf precipitation. The models response to the positive phase of equatorial Atlantic mode (warm SSTs) depicts a direct impact in the equatorial Atlantic, leading to a decrease of the local surface temperature gradient, weakening the West African Monsoon flow and the surface convergence over the Sahel.


West African Monsoon Tropical Atlantic variability Tropical teleconnections 


  1. Cane MA, Clement AC, Kaplan A, Kushnir Y, Pozdnyakov D, Seager R, Zebiak SE, Murtugudde R (1997) Twentieth-century sea surface temperature trends. Science 275:957–960. doi:10.1126/science.275.5302.957 CrossRefGoogle Scholar
  2. Cook KH (1999) Generation of the African Easterly Jet and its role in determining West African precipitation. J Clim 12:1165–1184CrossRefGoogle Scholar
  3. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Clim Dyn 10:249–266CrossRefGoogle Scholar
  4. García-Serrano J, Losada T, Polo I, Rodríguez-Fonseca B (2008) Tropical Atlantic Variability modes (1979–2002). Part II: time-evolving atmospheric circulation related to SST-forced tropical convection. J Clim 21:6476–6497. doi:10.1175/2008JCLI2191,1 CrossRefGoogle Scholar
  5. Giannini A, Saravannan R, Chang P (2005) Dynamics of the boreal summer African monsoon in the NSIPP1 atmospheric model. Clim Dyn 25:517–535. doi:10.1007/s00382-005-0056 CrossRefGoogle Scholar
  6. Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Quart J Met Soc 106:447–462CrossRefGoogle Scholar
  7. Gu G, Adler RF (2004) Seasonal evolution and variability associated with the West African monsoon system. J Clim 17:3364–3377CrossRefGoogle Scholar
  8. Hagos SM, Cook KH (2007) Dynamics of the West African monsoon jump. J Clim 20:5264–5284CrossRefGoogle Scholar
  9. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  10. Janicot S (1992) Spatiotemporal variability of West African rainfall. Part II: associated surface and airmass characteristics. J Clim 5:499–511CrossRefGoogle Scholar
  11. Janicot S, Harzallah A, Fontaine B, Moron V (1998) West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–1988). J Clim 11:1874–1882Google Scholar
  12. Janicot S, Trzaska S, Poccard I (2001) Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Clim Dyn 18:303–320CrossRefGoogle Scholar
  13. Kucharski F, Bracco A, Yoo JH, Tompkins A, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill-Matsun-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Quart J R Met Soc 135:569–579CrossRefGoogle Scholar
  14. Lare A, Nicholson S (1994) Contrasting conditions of surface water balance in wet years and dry years as a possible land surface-atmosphere feedback mechanism in the West African Sahel. J Clim 7:653–668CrossRefGoogle Scholar
  15. Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) The 1976–77–climate shift of the Pacific Ocean. Oceanogr 7:21–26Google Scholar
  16. Nicholson SE (2009) A revised picture of the structure of the “monsoon” and land ITCZ over West Africa. Clim Dyn, accepted. doi:10.1007/s00382-008-0514-3
  17. Nicholson SE, Grist JP (2003) The seasonal evolution of the atmospheric circulation over West Africa and equatorial Africa. J Clim 16:1013–1030CrossRefGoogle Scholar
  18. Nicholson SE, Webster PJ (2007) A physical basis for the interannual variability of rainfall in the Sahel. Quart J R Met Soc 133:2065–2084. doi:10.1002/qj.104 CrossRefGoogle Scholar
  19. Paeth H, Friederichs P (2004) Seasonality and time scales in the relationship between global SST and African rainfall. Clim Dyn 23:815–837. doi:10.1007/s00382-004-0466-1 CrossRefGoogle Scholar
  20. Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475. doi:10.1175/2008JCLI2607.1 CrossRefGoogle Scholar
  21. Ramel R, Gallée H, Messager C (2006) On the northward shift of the West African monsoon. Clim Dyn 26:429–440. doi:10,1007/s00382-005-0093-5 CrossRefGoogle Scholar
  22. Ritcher I, Mechoso CR, Robertson AW (2008) What determines the position and intensity of the south Atlantic anticyclone in Austral Winter? An AGCM study. J Clim 21:214–229CrossRefGoogle Scholar
  23. Robertson AW, Farrara JD, Mechoso CR (2003) Simulations of the atmospheric response to South Atlantic Sea surface temperature anomalies. J Clim 16:2540–2551CrossRefGoogle Scholar
  24. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model descriptions and simulation of present-day climate. Max-Planck-Institute Rep 218, 94 pp, Hamburg, GermanyGoogle Scholar
  25. Rowell DP, Folland CK, Maskel K, Owen JA, Ward MN (1995) Variability of the summer rainfall over tropical North Africa (1906–92): observations and modeling. Quart J Roy Meteor Soc 121:669–704. doi:10.1002/qj.49712152311 Google Scholar
  26. Shinoda M, Kawamura R (1994) Tropical rainbelt, circulation and sea surface temperatures associated with the Sahelian rainfall trend. J Meteor Soc Jpn 72:341–357Google Scholar
  27. Smith TM, Reynolds RW (2004) Imporved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  28. Sultan B, Janicot S (2000) Abrupt shift of the ITCZ over West Africa and intra-seasonal variability. Geophys Res Lett 27:3353–3356CrossRefGoogle Scholar
  29. Sultan B, Janicot S (2003) The West African monsoon dynamics. Part II: The “preonset” and “onset” of the summer monsoon. J Clim 16:3407–3427CrossRefGoogle Scholar
  30. Tomas RA, Webster PJ (1997) The role of inertial instability in determining the location and strength of near-equatorial convection. Quart J Roy Meteor Soc 123:1445–1482. doi:10.1002/qj.49712354202 CrossRefGoogle Scholar
  31. Uppala SM et al (2005) The ERA-40 reanalysis. Quart J Roy Meteor Soc 131:2961–3012. doi:10.1256/gj04176 CrossRefGoogle Scholar
  32. Vizy EK, Cook KH (2001) Mechanisms by which Gulf of Guinea and Eastern North Atlantic Sea surface temperature anomalies can influence African rainfall. J Clim 14:795–821CrossRefGoogle Scholar
  33. Vizy EK, Cook KH (2002) Development and application of a mesoscale climate model for the tropics: influence of sea surface temperature anomalies on the West African monsoon. J Geophys Res Atmos 107(D3):4023. doi: 10.1029/2001JD000686 Google Scholar
  34. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, New York. ISBN 0521450713Google Scholar
  35. Ward MN (1998) Diagnosis and short-lead time prediction of summer rainfall in tropical North Africa at interannual and multidecadal timescales. J Clim 11:3167–3191CrossRefGoogle Scholar
  36. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteor Soc 78:2539–2558CrossRefGoogle Scholar
  37. Zebiak SE (1993) Air–sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • T. Losada
    • 1
  • B. Rodríguez-Fonseca
    • 1
  • S. Janicot
    • 2
  • S. Gervois
    • 2
  • F. Chauvin
    • 3
  • P. Ruti
    • 4
  1. 1.Universidad Complutense de MadridMadridSpain
  2. 2.LOCEAN/IPSL, CNRS, Université Pierre et Marie CurieParisFrance
  3. 3.GAME/CNRM, Météo-France/CNRSToulouseFrance
  4. 4.Progetto Speciale Clima Globale, Ente Nazionale per le NuoveTecnologieRomeItaly

Personalised recommendations