Climate Dynamics

, Volume 35, Issue 1, pp 45–52

Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach

  • T. Losada
  • B. Rodríguez-Fonseca
  • I. Polo
  • S. Janicot
  • S. Gervois
  • F. Chauvin
  • P. Ruti
Article

Abstract

On the frame of the AMMA-EU project, sensitivity experiments for an Atlantic Equatorial mode (AEM) which origin, development and damping resembles the observed one during the last decades of the 20th century, has been analysed in order to investigate the influence on the anomalous summer West African rainfall. Recent studies raise the matter of the AEM influence on the next Pacific ENSO episodes and also on the Indian Monsoon. This paper evaluates the response of four different atmospheric global circulation models, using the above-mentioned AEM sensitivity experiments, to study the tropical forcing associated with the Atlantic Niño mode. The results show a remote signal in both the Pacific and Indian basins. For a warm phase of the AEM the associated southward location of the ITCZ, with rising motions over the Equatorial Atlantic, leads to a global subsidence over the rest of the tropics, weakening the Asian Monsoon and favouring the La Niña conditions in the central Pacific. Although ocean–atmosphere coupled experiments are required to test the latter hypothesis, the present studies shows how the AEM is able to influence the rest of the tropics, a result with important implications on ENSO seasonal predictability.

References

  1. An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  2. Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific El Ninño and the Atlantic Niño. Nature 443:324–328. doi:10.1038/nature05053 CrossRefGoogle Scholar
  3. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Clim Dyn 10:249–266CrossRefGoogle Scholar
  4. Fedorov A, Philander SG (2000) Is El Niño changing? Science 288:1997–2002CrossRefGoogle Scholar
  5. Giannini A, Saravannan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030CrossRefGoogle Scholar
  6. Gill AE (1980) Some simple solutions for the heat induced tropical circulation. Quart J Met Soc 106:447–462CrossRefGoogle Scholar
  7. Graham NE (1994) Deacadal-scale climate variability in the tropical and North Pacific during the 1970s and 1980s: observations and results. Clim Dyn 10:135–162. doi:10.1007/BF00210626 CrossRefGoogle Scholar
  8. Hagos SM, Cook KH (2005) Influence of surface processes over Africa on the Atlantic marine ITCZ and South American precipitation. J Clim 18:4993–5010CrossRefGoogle Scholar
  9. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY, Krinner G, LeVan P, Li ZX, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813CrossRefGoogle Scholar
  10. Janicot S, Rodriguez-Fonseca B (2007) Results on SST-forced signals in AMIP simulations. AMMA-EU project. Deliverable D1.1.1eGoogle Scholar
  11. Janicot S, Trzaska S, Poccard I (2001) Summer Sahel-ENSO teleconnection and decadal time scale SST variations. Clim Dyn 18:303–320CrossRefGoogle Scholar
  12. Jansen MF, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567CrossRefGoogle Scholar
  13. Jin F, Hoskins BJ (1995) The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci 52:307–319CrossRefGoogle Scholar
  14. Jury MR, Enfield DB, Melice J-L (2002) Tropical monsoons around Africa: stability of ENSO associations and links with continental rainfall. J Geophys Res C10(15):1–17Google Scholar
  15. Keenlyside N, Latif M (2007) Understanding Equatorial Atlantic interannual varaibility. J Clim 20:131–142CrossRefGoogle Scholar
  16. Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-Frequency variability of the Indian monsoon–ENSO relationship and the tropical Atlantic: the “weakening” of the 1980s and 1990s. J Clim 20:4255–4266CrossRefGoogle Scholar
  17. Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35. doi:10.1029/2007GL033037
  18. Kucharski F, Bracco A, Yoo JH, Tompkins A, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill-Matsun-type mechanism explains the Tropical Atlantic influence on African and Indian Monsoon rainfall. Quart J R Met Soc 135:569–579CrossRefGoogle Scholar
  19. Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801CrossRefGoogle Scholar
  20. Latif M, Keenlyside NS (2008) El Niño/southern oscillation response to global warming. PNAS. doi:10.1073/pnas.0710860105
  21. Losada T, Rodriguez-Fonseca B, Janicot S, Gervois S, Chauvin F, Ruti P (2009) A multimodel approach to the Atlantic Equatorial mode. Impact on the West African monsoon. Clim Dyn. doi:10.1007/s00382-009-0625-5
  22. Melice JL, Servain J (2003) The tropical Atlantic meridional SST gradient index and its relationships with the SOI, NAO and Southern Ocean. Clim Dyn 20:447–464. doi:10.1007/s00382-002-0289-x Google Scholar
  23. Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) The 1976–77 climate shift of the Pacific Ocean. Oceanography 7:21–26Google Scholar
  24. Nitta S, Yamada T (1989) Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J Meteorol Soc Jpn 67:375–383Google Scholar
  25. Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475. doi:10.1175/2008JCLI2607.1 CrossRefGoogle Scholar
  26. Rasmusson EM, Carpenter TH (1982) Variations in the tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  27. Richter I, Mechoso CR, Robertson AW (2008) What determines the position and intensity of the South Atlantic Anticyclone in austral winter? An AGCM Study. J Clim 21:214–229CrossRefGoogle Scholar
  28. Rodriguez-Fonseca B, Polo I, Garcia-Serrano J (2008) Recent trends in the Pacific-Atlantic connection. In: Proceedings of the “6ª Asamblea Hispano Portuguesa de Geodesia y Geofisica”, Tomar, PortugalGoogle Scholar
  29. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model descriptions and simulation of present-day climate. Max-Planck-Institute report 218, Hamburg, Germany, p 94Google Scholar
  30. Rowell DP, Folland CK, Maskel K, Owen JA, Ward MN (1995) Variability of the summer rainfall over tropical North Africa (1906–92): observations and modeling. Quat J Roy Meteorol Soc 121:669–704. doi:10.1002/qj.49712152311 Google Scholar
  31. Smith TM, Reynolds RW (2004) Imporved extended reconstruction of SST (1854–1997). J Clim 17:2466–2477CrossRefGoogle Scholar
  32. Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Niño–southern oscillation: a new perspective. J Clim 18:1351–1368CrossRefGoogle Scholar
  33. Trenberth KE (1990) Recent observed interdecadal climate changes in the northern hemisphere. Bull Am Meteorol Soc 71:988–993CrossRefGoogle Scholar
  34. Vizy EK, Cook KH (2001) Mechanisms by which Gulf of Guinea and Eastern North Atlantic Sea surface temperature anomalies can influence African rainfall. J Clim 14:795–821CrossRefGoogle Scholar
  35. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, New York. ISBN 0521450713Google Scholar
  36. Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Clim 8:267–285CrossRefGoogle Scholar
  37. Wang C (2006) An overlooked feature of tropical climate: Inter-Pacific-Atlantic variability. Geophys Res Lett 33:L12702. doi:10.1029/2006GL026324 CrossRefGoogle Scholar
  38. Wang B, An S (2002) A GCM-based assessment of the global moisture budget and the role of land-surface moisture reservoirs in processing precipitation. Clim Dyn 20:13–29. doi:10.1007/s00382-002-0274-4 CrossRefGoogle Scholar
  39. Wang C, Kucharski F, Barimalala R, Bracco A (2009) Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a review of recent findings. Spec Issue Meteorol Zeitschrift 18. doi:10.1127/0941-2948/2009/0394

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • T. Losada
    • 1
  • B. Rodríguez-Fonseca
    • 1
  • I. Polo
    • 1
  • S. Janicot
    • 2
  • S. Gervois
    • 2
  • F. Chauvin
    • 3
  • P. Ruti
    • 4
  1. 1.Universidad Complutense de MadridMadridSpain
  2. 2.LOCEAN/IPSL, CNRSUniversité Pierre et Marie CurieParisFrance
  3. 3.GAME/CNRM, Météo-France/CNRSToulouseFrance
  4. 4.Progetto Speciale Clima Globale, Ente Nazionale per le NuoveTecnologie, l’Energia e l’AmbienteRomeItaly

Personalised recommendations