Climate Dynamics

, Volume 34, Issue 6, pp 819–833 | Cite as

Improvements in a half degree atmosphere/land version of the CCSM

  • Peter R. Gent
  • Stephen G. Yeager
  • Richard B. Neale
  • Samuel Levis
  • David A. Bailey
Article

Abstract

A decadal climate projection between 1980 and 2030 using a nominal 0.5° resolution in the atmosphere and land components has been performed using the Community Climate System Model, version 3.5. The mean climate is compared to a companion simulation using a nominal 2° resolution in the atmosphere and land components. The increased atmosphere resolution has several benefits, and produces a significantly better mean climate. The maximum sea surface temperature biases in the major upwelling regions, including the West Coast of the USA, are reduced by more than 60%. Precipitation patterns are improved in the summer Asian monsoon, mostly due to the better resolved orography, and in the eastern tropical Pacific Ocean south of the equator. The improved precipitation patterns lead to better river flows in many rivers worldwide. The atmospheric circulation in the Arctic also improves, which leads to a better regional sea ice thickness distribution in the Arctic Ocean.

Keywords

Climate Projections CCSM Resolution 

References

  1. Bala G et al (2008) Evaluation of a CCSM3 simulation with a finite volume dynamical core for the atmosphere at 1° latitude by 1.25° longitude resolution. J Clim 21:1467–1486. doi:10.1175/2007JCLI2060.1 CrossRefGoogle Scholar
  2. Brankovic C, Gregory D (2001) Impact of horizontal resolution on seasonal integrations. Clim Dyn 18:123–143. doi:10.1007/s003820100165 CrossRefGoogle Scholar
  3. Branstetter ML, Erickson DJ (2003) Continental runoff dynamics in the Community Climate System Model (CCSM2) control simulation. J Geophys Res 108. doi:10.1029/2003JD003212
  4. Briegleb BP, Light B (2007) A Delta-Eddington multiple scattering parameterization for solar radiation in the sea ice component of the Community Climate System Model. NCAR/TN-472+STR, 100 ppGoogle Scholar
  5. Collins WD et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143. doi:10.1175/JCLI3761.1 CrossRefGoogle Scholar
  6. Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–687. doi:10.1175/1525-7541(2002)003<0660:EOFDFC>2.0.CO;2 CrossRefGoogle Scholar
  7. Danabasoglu G, Marshall J (2007) Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Model 18:122–141. doi:10.1016/j.ocemod.2007.03.006 CrossRefGoogle Scholar
  8. Danabasoglu G, Ferrari R, McWilliams JC (2008) Sensitivity of an ocean general circulation model to a parameterization of near-surface eddy fluxes. J Clim 21:1192–1208. doi:10.1175/2007JCLI1508.1 CrossRefGoogle Scholar
  9. Guilyardi E et al (2004) Representing El Nino in coupled ocean/atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629. doi:10.1175/JCLI-3260.1 CrossRefGoogle Scholar
  10. Hack JJ, Caron JM, Danabasoglu G, Oleson KW, Bitz C, Truesdale JE (2006) CCSM–CAM3 climate simulation sensitivity to changes in horizontal resolution. J Clim 19:2267–2289. doi:10.1175/JCLI3764.1 CrossRefGoogle Scholar
  11. Jochum M, Danabasoglu G, Holland MM, Kwon YO, Large WG (2008) Ocean viscosity and climate. J Geophys Res 113. doi:10.1029/2007JC004515
  12. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921 CrossRefGoogle Scholar
  13. Kobayashi C, Sugi M (2004) Impact of horizontal resolution on the simulation of the Asian summer monsoon and tropical cyclones in the JMA global model. Clim Dyn 23:165–176. doi:10.1007/s00382-004-0427-8 CrossRefGoogle Scholar
  14. Large WG, Danabasoglu G (2006) Attribution and impacts of upper-ocean biases in CCSM3. J Clim 19:2325–2346. doi:10.1175/JCLI3740.1 CrossRefGoogle Scholar
  15. Levitus S, Boyer T, Conkwright M, Johnson D, O’Brien T, Antonov J, Stephens C, Gelfeld R (1998) Introduction, vol 1. World Ocean Database 1998, NOAA Atlas NESDIS 18, 346 ppGoogle Scholar
  16. Lin SJ (2004) A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon Weather Rev 132:2293–2307. doi:10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2 CrossRefGoogle Scholar
  17. May W, Roeckner E (2001) A time-slice experiment with the ECHAM4 AGCM at high resolution: the impact of horizontal resolution on annual mean climate change. Clim Dyn 17:407–420. doi:10.1007/s003820000112 CrossRefGoogle Scholar
  18. Navarra A et al (2008) Atmospheric horizontal resolution affects tropical climate variability in coupled models. J Clim 21:730–750. doi:10.1175/2007JCLI1406.1 CrossRefGoogle Scholar
  19. Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924. doi:10.1175/2008JCLI2244.1 CrossRefGoogle Scholar
  20. Oleson KW et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113:G01021. doi:10.1029/2007JG000563 CrossRefGoogle Scholar
  21. Pope V, Stratton R (2002) The processes governing horizontal resolution sensitivity in a climate model. Clim Dyn 19:211–236. doi:10.1007/s00382-001-0222-8 CrossRefGoogle Scholar
  22. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  23. Richter JH, Rasch PJ (2008) Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3. J Clim 21:1487–1499. doi:10.1175/2007JCLI1789.1 CrossRefGoogle Scholar
  24. Smith TM, Reynolds RW (1998) A high-resolution global sea surface temperature climatology for the 1961–90 base period. J Clim 11:3320–3323. doi:10.1175/1520-0442(1998)011<3320:AHRGSS>2.0.CO;2 CrossRefGoogle Scholar
  25. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi:10.1126/science.1139540 CrossRefGoogle Scholar
  26. Steele M, Morley R, Ermold W (2001) PHC: a global ocean hydrography with a high-quality Arctic Ocean. J Clim 12:2079–2087. doi:10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2 CrossRefGoogle Scholar
  27. Stockli R, Lawrence DM, Niu GY, Oleson KW, Thornton PE, Yang ZL, Bonan GB, Denning AS, Running SW (2008) Use of FLUXNET in the Community Land Model development. J Geophys Res 113:G01025. doi:10.1029/2007JG000562 CrossRefGoogle Scholar
  28. Williamson DL (2008) Equivalent finite volume and spectral transform horizontal resolutions established from aqua-planet simulations. Tellus 60:839–847. doi:10.1111/j.1600-0870.2008.00340.x CrossRefGoogle Scholar
  29. Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999), version 3.02. Center for Climate Research, Department of Geography, University of Delaware, NewarkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Peter R. Gent
    • 1
  • Stephen G. Yeager
    • 1
  • Richard B. Neale
    • 1
  • Samuel Levis
    • 1
  • David A. Bailey
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations