Climate Dynamics

, Volume 35, Issue 4, pp 713–719 | Cite as

Effects of physical changes in the ocean on the atmospheric pCO2: glacial-interglacial cycles

  • Takasumi Kurahashi-Nakamura
  • Ayako Abe-Ouchi
  • Yasuhiro Yamanaka
Article

Abstract

Based on LGM experiments with an atmosphere–ocean general circulation model, we systematically investigated the effects of physical changes in the ocean and induced biological effects as well on the low atmospheric CO2 concentration (pCO2) at the last glacial maximum (LGM). Numerical experiments with an oceanic carbon-cycle model showed that pCO2 was lowered by ~30 ppm in the LGM ocean. Most of the pCO2 reduction was explained by the change in CO2 solubility in the ocean due to lower sea surface temperature (SST) during the LGM. Moreover, we found that SST changes in the high-latitude Northern Atlantic could explain more than one-third of the overall change in pCO2 induced by global SST change, suggesting an important feedback between the Laurentide ice sheet and pCO2.

Keywords

Paleoclimate Marine carbon cycle Carbon dioxide Glacial-interglacial cycles 

References

  1. Adkins JF, McIntyre K, Schrag DP (2002) The salinity, temperature, and δ18O of the glacial deep ocean. Science 298:1770–1773CrossRefGoogle Scholar
  2. Archer D, Winguth A, Lea D et al (2000) What caused the glacial/interglacial atmospheric pCO2 cycles? Rev Geophys 38(2):159–189CrossRefGoogle Scholar
  3. Bopp L, Kohfeld KE, Quere CL et al (2003) Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography. doi:10.1029/2002PA000810
  4. Braconnot P, Otto-Bliesner B, Harrison S et al (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and last glacial maximum—part 1: experiments and large-scale features. Clim Past 3:261–277CrossRefGoogle Scholar
  5. Brovkin V, Ganopolski A, Archer D et al (2007) Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22:PA4202. doi:10.1029/2006PA001380 CrossRefGoogle Scholar
  6. CLIMAP (1981) Seasonal reconstruction of the earth’s surface at the last glacial maximum. Tech. Rep. Map and Chart Ser. MC 36, Geol. Soc. of Am., BoulderGoogle Scholar
  7. K-1 Model Developers (2004) K-1 coupled model (MIROC) description. K-1 Tech. Rep. 1, Cent. for Clim. Sys. Res., TokyoGoogle Scholar
  8. Kim SJ (2004) The effect of atmospheric CO2 and ice sheet topography on LGM climate. Clim Dyn 22:639–651CrossRefGoogle Scholar
  9. Köhler P, Fischer H, Munhoven G et al (2005) Quantitative interpretation of atmospheric carbon records over the last glacial termination. Global Biogeochem Cycles. doi:10.1029/2004GB002345
  10. Otto-Bliesner BL, Hewitt CD, Marchitto TM et al (2007) Last glacial maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys Res Lett 34:L12706. doi:10.1029/2007GL029475 CrossRefGoogle Scholar
  11. Peacock S, Lane E, Restrepo JM (2006) A possible sequence of events for the generalized glacial-interglacial cycle. Global Biogeochem Cycles. doi:10.1029/2005GB002448
  12. Sarnthein M, Winn K, Jung SJA et al (1994) Changes in East Atlantic deepwater circulation over the last 30, 000 years—8 times slice reconstructions. Paleoceanography 9:209–267CrossRefGoogle Scholar
  13. Schmittner A (2003) Southern Ocean sea ice and radiocarbon ages of glacial bottom waters. Earth Planet Sci Lett 213:53–62CrossRefGoogle Scholar
  14. Schmittner A, Galbraith ED (2008) Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456:373–376CrossRefGoogle Scholar
  15. Sigman DM, Boyle EA (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407:859–869CrossRefGoogle Scholar
  16. Toggweiler JR, Gnanadesikan A, Carson S et al (2003a) Representation of the carbon cycle in box models and GCMs: 1. Solubility pump. Global Biogeochem Cycles 17(1):1026. doi:10.1029/2001GB001401 CrossRefGoogle Scholar
  17. Toggweiler JR, Gnanadesikan A, Carson S et al (2003b) Representation of the carbon cycle in box models and GCMs: 2. Organic pump. Global Biogeochem Cycles 17(1):1027. doi:10.1029/2001GB001401 CrossRefGoogle Scholar
  18. Yamanaka Y, Tajika E (1996) The role of the vertical fluxes of particulate organic matter and calcite in the oceanic carbon cycle: studies using an ocean biogeochemical general circulation model. Global Biogeochem Cycles 10(2):361–382CrossRefGoogle Scholar
  19. Yu EF, Francois R, Bacon MP (1996) Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature 379:689–694CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Takasumi Kurahashi-Nakamura
    • 1
    • 2
    • 3
  • Ayako Abe-Ouchi
    • 1
    • 2
  • Yasuhiro Yamanaka
    • 1
    • 4
  1. 1.Frontier Research Center for Global Change, JAMSTECYokohamaJapan
  2. 2.Center for Climate System ResearchThe University of TokyoKashiwaJapan
  3. 3.School of Geographical SciencesUniversity of BristolBristolUK
  4. 4.Graduate School of Environmental Earth ScienceHokkaido UniversitySapporoJapan

Personalised recommendations