Climate Dynamics

, Volume 34, Issue 2–3, pp 381–398 | Cite as

Stratospheric temperature trends: impact of ozone variability and the QBO

  • Mauro Dall’Amico
  • Lesley J. Gray
  • Karen H. Rosenlof
  • Adam A. Scaife
  • Keith P. Shine
  • Peter A. Stott


In most climate simulations used by the Intergovernmental Panel on Climate Change 2007 fourth assessment report, stratospheric processes are only poorly represented. For example, climatological or simple specifications of time-varying ozone concentrations are imposed and the quasi-biennial oscillation (QBO) of equatorial stratospheric zonal wind is absent. Here we investigate the impact of an improved stratospheric representation using two sets of perturbed simulations with the Hadley Centre coupled ocean atmosphere model HadGEM1 with natural and anthropogenic forcings for the 1979–2003 period. In the first set of simulations, the usual zonal mean ozone climatology with superimposed trends is replaced with a time series of observed zonal mean ozone distributions that includes interannual variability associated with the solar cycle, QBO and volcanic eruptions. In addition to this, the second set of perturbed simulations includes a scheme in which the stratospheric zonal wind in the tropics is relaxed to appropriate zonal mean values obtained from the ERA-40 re-analysis, thus forcing a QBO. Both of these changes are applied strictly to the stratosphere only. The improved ozone field results in an improved simulation of the stepwise temperature transitions observed in the lower stratosphere in the aftermath of the two major recent volcanic eruptions. The contribution of the solar cycle signal in the ozone field to this improved representation of the stepwise cooling is discussed. The improved ozone field and also the QBO result in an improved simulation of observed trends, both globally and at tropical latitudes. The Eulerian upwelling in the lower stratosphere in the equatorial region is enhanced by the improved ozone field and is affected by the QBO relaxation, yet neither induces a significant change in the upwelling trend.


All-forcings simulations of recent climate assessed by the IPCC 2007 AR4 Observed zonal mean ozone distributions QBO of stratospheric equatorial zonal wind 11-year solar cycle Volcanic eruptions of El Chichón and Mt. Pinatubo Variability and trends of stratospheric temperatures 


  1. Allen MJ, Lunine JI, Yung YL (1984) The vertical distribution of ozone in the mesosphere and lower thermosphere. Geophys Res Lett 89:4841–4872Google Scholar
  2. Angell JK (1997) Stratospheric warming due to Agung, El Chichon, and Pinatubo taking into account the quasi-biennial oscillation. J Geophys Res 102:9479–9485. doi:10.1029/96JD03588 CrossRefGoogle Scholar
  3. Austin J, Tourpali K, Rozanov E, Akiyoshi H, Bekki S, Bodeker G, Bruhl C, Butchart N, Chipperfield M, Deushi M, Fomichev VI, Giorgetta MA, Gray L, Kodera K, Lott F, Manzini E, Marsh D, Matthes K, Nagashima T, Shibata K, Stolarski RS, Struthers H, Tian W (2008) Coupled chemistry climate model simulations of the solar cycle in ozone and temperature. J Geophys Res 113:D11306. doi:10.1029/1007JD009391 CrossRefGoogle Scholar
  4. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229. doi:10.1029/1999RG000073 CrossRefGoogle Scholar
  5. Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and skill of extended-range weather forecasts. Science 301:636–640. doi:10.1126/science.1087143 CrossRefGoogle Scholar
  6. Butchart N, Scaife AA (2001) Removal of chlorofluorocarbons through increased mass exchange between the stratosphere and troposphere in a changing climate. Nature 410:799–802. doi:10.1038/35071047 CrossRefGoogle Scholar
  7. Collimore CC, Hitchman M, Martin DW (1998) Is there a quasi-biennial oscillation in tropical deep convection? Geophys Res Lett 25:333–336. doi:10.1029/97GL03722 CrossRefGoogle Scholar
  8. Collimore CC, Martin DW, Hitchman M, Huesmann A, Waliser D (2003) On the relationship between the QBO and tropical deep convection. J Clim 16:2552–2568. doi:10.1175/1520-0442(2003)016<2552:OTRBTQ>2.0.CO;2 CrossRefGoogle Scholar
  9. Collins WJ, Stevenson DS, Johnson CE, Derwent RG (1997) Tropospheric ozone in a global-scale three-dimensional Lagrangian model and its response to NOx emission controls. J Atmos Chem 26:223–274CrossRefGoogle Scholar
  10. Cordero EC, Forster PMF (2006) Stratospheric variability and trends in models used for he IPCC AR4. Atmos Chem Phys 6:5369–5380CrossRefGoogle Scholar
  11. Coughlin K, Tung KK (2001) QBO signals found at the extratropical surface through Northern annular Modes. Geophys Res Lett 28:4563–4566. doi:10.1029/2001GL013565 CrossRefGoogle Scholar
  12. Crooks S, Gray LJ (2005) Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J Clim 18:996–1015. doi:10.1175/JCLI-3308.1 CrossRefGoogle Scholar
  13. Dall’Amico M, Egger J (2007) Empirical master equations. Part II: application to stratospheric QBO, solar cycle, and northern annular mode. J Atmos Sci 64:2996–3015. doi:10.1175/JAS3993.1 CrossRefGoogle Scholar
  14. Dall’Amico M, Stott PA, Scaife AA, Gray LJ, Rosenlof KH, Karpechko AY (2009) Impact of stratospheric variability on tropospheric climate change. Clim Dyn. doi:10.1007/s00382-009-0580-1
  15. Daniel JS, Solomon S, Albritton DL (1995) On the evaluation of halocarbon radiative forcing and global warming potentials. J Geophys Res 100:1271–1285. doi:10.1029/94JD02516 CrossRefGoogle Scholar
  16. Eyring V, Butchart N, Waugh DW, Akiyoshi H, Austin J, Bekki S, Bodeker GE, Boville BA, Brühl C, Chipperfield MP, Cordero E, Dameris M, Deushi M, Fioletov VE, Frith SM, Garcia RR, Gettelman A, Giorgetta MA, Grewe V, Jourdain L, Kinnison DE, Mancini E, Manzini E, Marchand M, Marsh DR, Nagashima T, Newman PA, Nielsen JE, Pawson S, Pitari G, Plummer DA, Rozanov E, Schraner M, Shepherd TG, Shibata K, Stolarski RS, Struthers H, Tian W, Yoshiki M (2006) Assessment of temperature, trace species, and ozone in chemistry climate model simulations of the recent past. J Geophys Res 111:D22308. doi:10.1029/2006JD007327 CrossRefGoogle Scholar
  17. Fortuin JPF, Kelder H (1998) An ozone climatology based on ozonesonde and satellite measurements. J Geophys Res 103:21709–31734Google Scholar
  18. Free M, Seidel DJ, Angell JK, Lanzante J, Durre I, Peterson TC (2005) Radiosonde atmospheric temperature products fro assessing climate (RATPAC): a new dataset of large-area anomaly time series. J Geophys Res 110:D22101. doi:10.1029/2005JD006169 CrossRefGoogle Scholar
  19. Gillett NP, Thompson WJ (2003) Simulation of recent southern hemisphere climate change. Science 302:273–275. doi:10.1126/science.1087440 CrossRefGoogle Scholar
  20. Giorgetta MA, Bengtsson L, Arpe K (1999) An investigation of QBO signals in the east Asian and Indian monsoon in GCM experiments. Clim Dyn 15:435–450. doi:10.1007/s003820050292 CrossRefGoogle Scholar
  21. Gray LJ, Pyle JA (1989) A two dimensional model of the quasi-biennial oscillation of ozone. J Atmos Sci 46:203–220. doi:10.1175/1520-0469(1989)046<0203:ATDMOT>2.0.CO;2 CrossRefGoogle Scholar
  22. Gray LJ, Ruth S (1993) The modelled latitudinal distribution the ozone quasi-biennial oscillation using observed equatorial winds. J Atmos Sci 50:1033–1046. doi:10.1175/1520-0469(1993)050<1033:TMLDOT>2.0.CO;2 CrossRefGoogle Scholar
  23. Gray LJ, Rumbold ST, Shine KP (2009) Stratospheric temperature and radiative forcing response to 11-year solar cycle changes in irradiance and ozone. J Atmos Sci. doi:10.1175/2009JAS2866.1
  24. Haigh JD (2003) The effects of solar variability on the Earth’s climate. Philos Trans R Soc Lond 361:95–111. doi:10.1098/rsta.2002.1111 CrossRefGoogle Scholar
  25. Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower stratospheric temperature. J Clim 18:3672–3685. doi:10.1175/JCLI3472.1 CrossRefGoogle Scholar
  26. Hamilton K (1998) Effects of an imposed quasi-biennial oscillation in a comprehensive troposphere–stratosphere–mesosphere general circulation model. J Clim 55:2393–2418Google Scholar
  27. Heath DF, Krueger AJ, Roeder HR, Henderson BD (1975) The solar backscatter ultraviolet and total ozone mapping spectrometer (SBUV/TOMS) for Nimbus G. Opt Eng 14:323–331Google Scholar
  28. Intergovernmental Panel on Climate Change (2007) The physical science basis: working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press, LondonGoogle Scholar
  29. Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Riddley JK, Senior CA, Williams KD et al (2006) The new Hadley Centre climate model (HadGEM1). Evaluation of coupled simulations. J Clim 19:1327–1353. doi:10.1175/JCLI3712.1 CrossRefGoogle Scholar
  30. Karoly (2000) Stratospheric aspects of climate forcing. SPARC Newsletter 14.
  31. Kiehl JT, Schneider TL, Poltmann RW, Solomon S (1999) Climate forcing due to tropospheric and stratospheric ozone. J Geophys Res 104(31):239–254Google Scholar
  32. Lanzante JR, Free M (2008) Comparison of radiosonde and GCM vertical temperature trend profiles: effects of dataset choice and data homogenization. J Clim 21:5417–5435. doi:10.1175/2008JCLI2287.1 CrossRefGoogle Scholar
  33. Lean J, Beer J, Bradly R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22:3195–3198. doi:10.1029/95GL03093 CrossRefGoogle Scholar
  34. Li D, Shine KP (1995) A 4-dimensional ozone climatology for UGAMP models UK Universities global atmospheric modelling programme internal report No. 35Google Scholar
  35. Li D, Shine KP, Gray LJ (1995) The role of ozone-induced diabatic heating anomalies in the quasi-biennial oscillation. Q J R Meteorol Soc 121:937–943. doi:10.1002/qj.49712152411 CrossRefGoogle Scholar
  36. Livesey NJ, Read WG, Froidevaux L, Waters JW, Pumphrey HC, Wu DL, Santee ML, Shippony Z, Jarnot RF (2003) The UARS Microwave limb sounder version 5 dataset: Theory, characterization and validation. J Geophys Res 108(D13):4378. doi:10.1029/2002JD002273 Google Scholar
  37. Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The Physical properties of the atmosphere in the new Hadley Centre global environmental model (HadGEM1). Part I: model description and global climatology. J Clim 19:1274–1301. doi:10.1175/JCLI3636.1 CrossRefGoogle Scholar
  38. McCormick MP, Zawodny JM, Viega RE, Larson JC, Wang PH (1989) An overview of SAGE I and II ozone measurements. Planet Space Sci 37:1567–1586. doi:10.1016/0032-0633(89)90146-3 CrossRefGoogle Scholar
  39. Mears CA, Schabel MC, Wentz FJ (2003) A reanalysis of the MSU Channel 2 tropospheric temperature record. J Clim 16:3650–3664. doi:10.1175/1520-0442(2003)016<3650:AROTMC>2.0.CO;2 CrossRefGoogle Scholar
  40. Montzka SA, Butler JH, Elkins JW, Thompson TM, Clarke AD, Lock LT (1999) Present and future trends in the atmospheric burden of ozone-depleting halogens. Nature 398:690–694. doi:10.1038/19499 CrossRefGoogle Scholar
  41. Nakicenovic N, Swart R (eds) (2000) Emission scenarios. Cambridge University Press, London, 570 ppGoogle Scholar
  42. Pascoe CL, Gray LJ, Crooks SA, Juckes MN, Baldwin MP (2005) The quasi-biennial oscillation: Analysis using ERA-40 data. J Geophys Res 110:D08105. doi:10.1029/2004JD004941 CrossRefGoogle Scholar
  43. Pawson S, Labitzke K, Leder S (1998) Stepwise changes in stratospheric temperature. Geophys Res Lett 25:2157–2160. doi:10.1029/98GL51534 CrossRefGoogle Scholar
  44. Ramaswamy V, Schwarzkopf MD, Randel WJ, Santer BD, Soden BJ, Stenchikov GL (2006) Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science 311:1138–1141. doi:10.1126/science.1122587 CrossRefGoogle Scholar
  45. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  46. Randel WJ, Wu F (1995) TOMS total ozone trends in potential vorticity coordinates. Geophys Res Lett 22:683–686. doi:10.1029/94GL02790 CrossRefGoogle Scholar
  47. Randel WJ, Wu F (1999) A stratospheric ozone trends dataset for global modelling. Geophys Res Lett 26:3089–3092. doi:10.1029/1999GL900615 CrossRefGoogle Scholar
  48. Randel WJ, Wu F (2007) A stratospheric ozone profile data set for 1979–2005: variability, trends, and comparisons with column ozone data. J Geophys Res 112:D06313. doi:10.1029/2006JD007339 CrossRefGoogle Scholar
  49. Randel WJ, Stolarski RS, Cunnold DM, Logan JA, Newchurch MJ, Zawodny JM (1999) Trends in the vertical distribution of ozone. Science 285:1689–1692. doi:10.1126/science.285.5434.1689 CrossRefGoogle Scholar
  50. Randel W, Petra U, Fleming EricF, Geller M, Marvin GelmanM, Hamilton K, Karoly D, Ortland D, Pawson S, Swinbank R, Wu F, Baldwin M, Chanin M-L, Keckhut P, Labitzke K, Remsberg E, Simmons A, Wu D (2004) The SPARC intercomparison of middle atmosphere climatologies. J Clim 17:986–1003. doi:10.1175/1520-0442(2004)017<0986:TSIOMC>2.0.CO;2 CrossRefGoogle Scholar
  51. Randel WJ, Shine KP, Austin J, Barnett J, Claud C, Gillett NP, Keckhut P, Langematz U, Lin R, Long C, Mears C, Miller A, Nash J, Seidel DJ, Thompson DWJ, Wu F, Yoden S (2009) An update of observed stratospheric temperature trends. J Geophys Res 114:D02107. doi:10.1029/2008JD010421 CrossRefGoogle Scholar
  52. Ringer MA, Martin G, Greeves C, Hinton T, Inness P, James P, Pope V, Scaife AA, Slingo J, Stratton R, Yang G (2006) The physical properties of the atmosphere in the New Hadley Centre global atmospheric model (HadGEM1): Part II: global variability and regional climate. J Clim 19:1302–1326. doi:10.1175/JCLI3713.1 CrossRefGoogle Scholar
  53. Rusch DW, Mount GH, Barth CA, Thomas RJ, Callan MT (1984) Solar mesosphere explorer ultraviolet spectrometer—measurements of ozone in the 1.0–0.1 hPa region. J Geophys Res 89:1677–1687. doi:10.1029/JD089iD07p11677 CrossRefGoogle Scholar
  54. Rusch DW, Clancy RT, Mccormick MP, Zawodny JM (1990) A comparison of solar mesosphere explorer and stratosphere aerosol and gas experiment II ozone densities near the stratopause. J Geophys Res 95:3533–3537. doi:10.1029/JD095iD04p03533 CrossRefGoogle Scholar
  55. Russell JM, Gordley LL, Park JH, Drayson SR, Hesketh DH, Cicerone RJ, Tuck AF, Frederick JE, Harries JE, Crutzen PJ (1993) The halogen occultation experiment. J Geophys Res 98(10):777–797CrossRefGoogle Scholar
  56. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003) Contributions of anthropogenic and natural forcings to recent tropopause height changes. Science 301:479–483. doi:10.1126/science.1084123 CrossRefGoogle Scholar
  57. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depths (1850–1990). J Geophys Res 98:22987–22994. doi:10.1029/93JD02553 CrossRefGoogle Scholar
  58. Sato M, Hansen J, Lacis A, Thomason L (2002) Stratospheric aerosol optical thickness NASA GISS datasets and images.
  59. Seidel DJ, Lanzante JR (2004) An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J Geophys Res 109:D14108. doi:10.1029/2003JD004414 CrossRefGoogle Scholar
  60. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111. doi:10.1029/2006JD007363
  61. Shine KP, Bourqui MS, Forster PM F, Hare SHE, Langematz U, Braesicke P, Grewe V, Ponater M, Schnadt C, Smith CA, Haigh JD, Austin J, Butchart N, Shindell DT, Randel WJ, Nagashima T, Portman RW, Solomon S, Seidel DJ, Lanzante J, Klein S, Ramaswamy V, Schwarzkopf MD (2003) A comparison of model-simulated trends in stratospheric temperature. Q J R Meteorol Soc 129:1565–1588. doi:10.1256/qJ02.186 CrossRefGoogle Scholar
  62. Solanki SK, Krivova NA (2003) Can solar variability explain global warming since 1970? J Geophys Res 108(5):1200. doi:10.1029/2002JA009753 CrossRefGoogle Scholar
  63. Solomon S (1999) Stratospheric ozone depletion: a review of concepts and history. Rev Geophys 37(3):275–316CrossRefGoogle Scholar
  64. Solomon S, Portmann RW, Garcia RR, Thomason LW, Poole LR, McCormick MP (1996) The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J Geophys Res 101:6713–6727CrossRefGoogle Scholar
  65. Stenchikov G, Hamilton K, Robock A, Ramaswamy V, Schwarzkopf MD (2004) Arctic oscillation response to the 1991 Pinatubo eruption in the SKyHI general circulation model with a realistic quasi-biennial oscillation. J Geophys Res 109. doi:10.1029/2003JD003699
  66. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf H-F (2006) Climate impacts of volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107. doi:10.1029/2005JD006286 CrossRefGoogle Scholar
  67. Stolarski RS, Frith SM (2006) Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: the importance of instrument drift uncertainty. Atmos Chem Phys 6:4057–4065Google Scholar
  68. Stott PA, Tett SFB, Jones GS, Allen MR, Ingram WJ, Mitchell JFB (2001) Attribution of twentieth century temperature change to natural and anthropogenic causes. Clim Dyn 17:1–21. doi:10.1007/PL00007924 CrossRefGoogle Scholar
  69. Stott PA, Jones GS, Mitchell JFB (2003) Do models underestimate the solar contribution to recent climate change? J Clim 16:4079–4093. doi:10.1175/1520-0442(2003)016<4079:DMUTSC>2.0.CO;2 CrossRefGoogle Scholar
  70. Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC, Thelen J-C (2006) Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J Clim 19:2763–2782. doi:10.1175/JCLI3731.1 CrossRefGoogle Scholar
  71. Thomas RJ, Barth CA, Rusch W, Sanders RW (1984) Solar mesosphere explorer near-infrared spectrometer—measurements of 1.27-micron radiances and the inference of mesospheric ozone. J Geophys Res 89:9569–9580. doi:10.1029/JD089iD06p09569 CrossRefGoogle Scholar
  72. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899. doi:10.1126/science.1069270 CrossRefGoogle Scholar
  73. Thompson DWJ, Solomon S (2009) Understanding recent stratospheric climate change. J Clim 22:1934–1943. doi:10.1175/2008JCLI2482.1 CrossRefGoogle Scholar
  74. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation Part I: month-to-month variability. J Clim 13:1000–1016. doi:10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2 CrossRefGoogle Scholar
  75. Thorne PW, Parker DE, Tett SFB, Jones PD, McCarthy M, Coleman H, Brohan P (2005) Revisiting radiosonde upper air temperature from 1958 to 2002. J Geophys Res 110:D18105. doi:10.1029/2004JD005753 CrossRefGoogle Scholar
  76. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  77. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, LondonGoogle Scholar

Copyright information

© Crown Copyright  2009

Authors and Affiliations

  • Mauro Dall’Amico
    • 1
    • 2
  • Lesley J. Gray
    • 1
  • Karen H. Rosenlof
    • 3
  • Adam A. Scaife
    • 4
  • Keith P. Shine
    • 5
  • Peter A. Stott
    • 6
  1. 1.NCAS Climate, Department of MeteorologyUniversity of ReadingReadingUK
  2. 2.Deutsches Zentrum für Luft-und RaumfahrtInstitut für Physik der AtmosphäreOberpfaffenhofenGermany
  3. 3.NOAA Earth System Research LaboratoryBoulderUSA
  4. 4.Met Office Hadley CentreExeterUK
  5. 5.Department of MeteorologyUniversity of ReadingReadingUK
  6. 6.Met Office Hadley CentreExeterUK

Personalised recommendations