Climate Dynamics

, Volume 33, Issue 5, pp 665–683 | Cite as

Tropical cyclone genesis frequency over the western North Pacific simulated in medium-resolution coupled general circulation models

  • Satoru Yokoi
  • Yukari N. Takayabu
  • Johnny C. L. Chan
Article

Abstract

This study examines the tropical cyclone (TC) genesis frequency over the western North Pacific simulated in atmosphere–ocean coupled general circulation models from the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. We first evaluate performances of eight models with atmospheric horizontal resolution of T63 or T106 by analyzing their daily-mean atmospheric outputs of twentieth-century climate simulations available from the Program for Climate Model Diagnosis and Intercomparison database. The genesis frequency is validated against the best-track data issued by the Japan Meteorological Agency. Five of the eight models reproduce realistic horizontal distribution of the TC genesis with a large fraction over the 10°–20°N, 120°–150°E area. These five high-performance models also realistically simulate the summer–winter contrast of the frequency. However, detailed seasonal march is slightly unrealistic; four of the models overestimate the frequency in the early season (May–June) while all of them underestimate the frequency in the mature season (July–September). Reasons for these biases in the seasonal march for the five high-performance models are discussed using the TC genesis potential (GP) index proposed by Emanuel and Nolan (in Am Meteor Soc, pp 240–241, 2004). The simulated GP has seasonal biases consistent with those of the TC genesis frequency. For all five models, the seasonal biases in GP are consistent with those in environmental lower-tropospheric vorticity, vertical wind shear, and relative humidity, which can be attributed to the simulated behavior of monsoon trough. The observed trough migrates northward from the equatorial region to reach the 10°–20°N latitudinal band during the mature season and contributes to the TC frequency maximum, whereas the simulated trough migrates northward too rapidly and reaches this latitude band in the early season, leading to the overestimation of the TC genesis frequency. In the mature season, the simulated trough reaches as far as 15°–25°N, accompanied by a strong vertical shear south of the trough, providing an unfavorable condition for TC genesis. It is concluded that an adequate simulation of the monsoon trough behavior is essential for a better reproduction of the TC frequency seasonal march.

Keywords

Model intercomparison Tropical cyclone Western North Pacific Monsoon trough WCRP CMIP3 

References

  1. Bengtsson L, Botzet M, Esch M (1995) Hurricane-type vortices in a general circulation model. Tellus 47A:175–196Google Scholar
  2. Bengtsson L, Botzet M, Esch M (1996) Will greenhouse gas-induced warming over the next 50 years lead to higher frequency and greater intensity of hurricanes? Tellus 48A:57–73Google Scholar
  3. Bengtsson L, Hodges KI, Esch M, Keenlyside N, Kornblueh L, Luo J-J, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus 59A:539–561Google Scholar
  4. Bister M, Emanuel KA (1998) Dissipative heating and hurricane intensity. Meteorol Atmos Phys 65:233–240. doi:10.1007/BF01030791 CrossRefGoogle Scholar
  5. Bister M, Emanuel KA (2002) Low frequency variability of tropical cyclone potential intensity 1. Interannual to interdecadal variability. J Geophys Res 107. doi:10.1029/2001JD000776
  6. Camargo SJ, Zebiak SE (2002) Improving the detection and tracking of tropical cyclones in atmospheric general circulation models. Weather Forecast 17:1152–1162. doi:10.1175/1520-0434(2002)017<1152:ITDATO>2.0.CO;2 CrossRefGoogle Scholar
  7. Camargo SJ, Sobel AH, Anthony AG, Barnston G, Emanuel KA (2007a) Tropical cyclone genesis potential index in climate models. Tellus 59A:428–443Google Scholar
  8. Camargo SJ, Emanuel KA, Sobel AH (2007b) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–2834. doi:10.1175/JCLI4282.1 Google Scholar
  9. Caron L-P, Jones CG (2008) Analysing present, past and future tropical cyclone activity as inferred from an ensemble of coupled global climate models. Tellus 60A:80–96Google Scholar
  10. Chan JCL (2005) Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorol Atmos Phys 89:143–152. doi:10.1007/s00703-005-0126-y CrossRefGoogle Scholar
  11. Chauvin F, Royer J-F, Déqué M (2006) Response of hurricane-type vortices to global warming as simulated by ARPEGE-Climate at high resolution. Clim Dyn 27:377–399. doi:10.1007/s00382-006-0135-7 CrossRefGoogle Scholar
  12. De Maria M, Knaff JA, Connell BH (2001) A tropical cyclone genesis parameter for the Tropical Atlantic. Weather Forecast 16:219–233. doi:10.1175/1520-0434(2001)016<0219:ATCGPF>2.0.CO;2 CrossRefGoogle Scholar
  13. Déqué M, Dreveton C, Braun A, Cariolle D (1994) The ARPEGE/IFS atmosphere model: a contribution to the French community climate modeling. Clim Dyn 10:249–266. doi:10.1007/BF00208992 CrossRefGoogle Scholar
  14. Emanuel KA (1986) An air–sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J Atmos Sci 43:585–604. doi:10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2 CrossRefGoogle Scholar
  15. Emanuel KA, Nolan DS (2004) Tropical cyclone activity and global climate. Preprints, 26th conference on hurricanes and tropical meteorology, Miami, FL, Am. Meteor. Soc., pp 240–241Google Scholar
  16. Emanuel K, Sundararajan R, Williams J (2008) Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull Am Meteorol Soc 89:347–367. doi:10.1175/BAMS-89-3-347 CrossRefGoogle Scholar
  17. Enomoto T, Hoskins BJ, Matsuda Y (2003) The formation mechanism of the Bonin high in August. Q J R Meteorol Soc 129:157–178. doi:10.1256/qj.01.211 CrossRefGoogle Scholar
  18. Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk EA, O’Farrell SP, Waterman LJ, Hirst AC, Wilson SG, Collier MA, Watterson IG, Elliott TI (2002) The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research technical paper; no. 60, 130 pp (http://www.dar.csiro.au/publications/gordon_2002a.pdf
  19. Gray WM (1975) Tropical cyclone genesis. Department of Atmospheric Science Paper, 234, Colorado State University, Fort Collins, CO, p 121Google Scholar
  20. Gray WM (1977) Tropical cyclone genesis in the western North Pacific. J Meteorol Soc Jpn 55:465–482Google Scholar
  21. Gray WM (1998) The formation of tropical cyclones. Meteorol Atmos Phys 67:37–69. doi:10.1007/BF01277501 CrossRefGoogle Scholar
  22. Hasegawa A, Emori S (2007) Effect of air–sea coupling in the assessment of CO2-induced intensification of tropical cyclone activity. Geophys Res Lett 34. doi:10.1029/2006GL028275
  23. K-1 Model Developers (2004) K-1 coupled model (MIROC) description. K-1 technical report 1, 34 pp (http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf)
  24. Knutson TR, Tuleya RE (2004) Impact of CO2-induced warming on simulated hurricane intensity and precipitation: sensitivity to the choice of climate model and convective parameterization. J Clim 17:3477–3495. doi:10.1175/1520-0442(2004)017<3477:IOCWOS>2.0.CO;2 CrossRefGoogle Scholar
  25. Knutson TR, Sirutis JJ, Garner ST, Vecchi GA, Held IM (2008) Simulated reduction in Atlantic hurricane frequency under twenty-first-century warming conditions. Nat Geosci 1:359–364. doi:10.1038/ngeo202 CrossRefGoogle Scholar
  26. Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Genio AD, Donner LJ, Emori S, Gueremy J-F, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J Clim 19:2665–2690. doi:10.1175/JCLI3735.1 CrossRefGoogle Scholar
  27. Madden RA, Julian PR (1994) Observations of the 40–50-day tropical oscillation—a review. Mon Weather Rev 122:814–837. doi:10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2 CrossRefGoogle Scholar
  28. McFarlane NA, Scinocca JF, Lazare M, Harvey R, Verseghy D, Li J (2005) The CCCma third generation atmospheric general circulation model. CCCma Internal Report, 25 pp (http://www.cccma.bc.ec.gc.ca/papers/jscinocca/AGCM3_report.pdf)
  29. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  30. Murakami T, Matsumoto J (1994) Summer monsoon over the Asian continent and western North Pacific. J Meteorol Soc Jpn 72:719–745Google Scholar
  31. Nakazawa T (1992) Seasonal phase lock of intraseasonal variation during the Asian summer monsoon. J Meteorol Soc Jpn 70:597–611Google Scholar
  32. Oouchi K, Yoshimura J, Yoshimura H, Mizuta R, Kusunoki S, Noda A (2006) Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: frequency and wind intensity analyses. J Meteorol Soc Jpn 84:259–276. doi:10.2151/jmsj.84.259 CrossRefGoogle Scholar
  33. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  34. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625. doi:10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2 CrossRefGoogle Scholar
  35. Ritchie EA, Holland GJ (1999) Large-scale patterns associated with tropical cyclogenesis in the Western Pacific. Mon Weather Rev 127:2027–2043. doi:10.1175/1520-0493(1999)127<2027:LSPAWT>2.0.CO;2 CrossRefGoogle Scholar
  36. Roeckner E, Arpe K, Bengtsson L, Christoph M, Claussen M, Dümenil L, Esch M, Giorgetta M, Schlese U, Schulzweida U (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Reports of the Max-Planck-Institute for Meteorology No. 218, 90 ppGoogle Scholar
  37. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. Reports of the Max Planck Institute for Meteorology No. 349, 127 ppGoogle Scholar
  38. Royer J-F, Chauvin F, Timbal B, Araspin P, Grimal D (1998) A GCM study of the impact of greenhouse gas increase on the frequency of occurrence of tropical cyclones. Clim Change 38:307–343. doi:10.1023/A:1005386312622 CrossRefGoogle Scholar
  39. Ryan BF, Watterson IG, Evans JL (1992) Tropical cyclone frequencies inferred from Gray’s yearly genesis parameter: validation of GCM tropical climates. Geophys Res Lett 19:1831–1834. doi:10.1029/92GL02149 CrossRefGoogle Scholar
  40. Stowasser M, Wang Y, Hamilton K (2007) Tropical cyclone changes in the western North Pacific in a global warming scenario. J Clim 20:2378–2396. doi:10.1175/JCLI4126.1 CrossRefGoogle Scholar
  41. Sugi M, Noda A, Sato N (2002) Influence of the global warming on tropical cyclone climatology: an experiment with the JMA global model. J Meteorol Soc Jpn 80:249–272. doi:10.2151/jmsj.80.249 CrossRefGoogle Scholar
  42. Tsutsui J, Kasahara A (1996) Simulated tropical cyclones using the National Center for Atmospheric Research community climate model. J Geophys Res 101:15013–15032. doi:10.1029/95JD03774 CrossRefGoogle Scholar
  43. Ueda H, Yasunari T (1996) Maturing process of the summer monsoon over the western North Pacific: a coupled ocean/atmosphere system. J Meteorol Soc Jpn 74:493–508Google Scholar
  44. Uppala SM and coauthors (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176
  45. Vecchi GA, Soden BJ (2007a) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070. doi:10.1038/nature06423 CrossRefGoogle Scholar
  46. Vecchi GA, Soden BJ (2007b) Increased tropical Atlantic wind shear in model projections of global warming. Geophys Res Lett 34. doi:10.1029/2006GL028905
  47. Vitart F, Anderson JL, Stern WF (1997) Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations. J Clim 10:745–760. doi:10.1175/1520-0442(1997)010<0745:SOIVOT>2.0.CO;2 CrossRefGoogle Scholar
  48. Vitart F, Anderson JL, Stern WF (1999) Impact of large-scale circulation on tropical storm frequency, intensity, and location, simulated by an ensemble of GCM integrations. J Clim 12:3237–3254. doi:10.1175/1520-0442(1999)012<3237:IOLSCO>2.0.CO;2 CrossRefGoogle Scholar
  49. Watterson IG, Evans JL, Ryan BF (1995) Seasonal and interannual variability of tropical cyclogenesis: diagnostics from large-scale fields. J Clim 8:3052–3066. doi:10.1175/1520-0442(1995)008<3052:SAIVOT>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Satoru Yokoi
    • 1
  • Yukari N. Takayabu
    • 1
    • 2
  • Johnny C. L. Chan
    • 3
  1. 1.Center for Climate System ResearchUniversity of TokyoKashiwaJapan
  2. 2.Research Institute for Global ChangeJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Laboratory for Atmospheric Research, Department of Physics and Materials ScienceCity University of Hong KongKowloon, Hong KongChina

Personalised recommendations