Climate Dynamics

, Volume 35, Issue 4, pp 619–633 | Cite as

Impact of prescribed Arctic sea ice thickness in simulations of the present and future climate

  • Gerhard Krinner
  • Annette Rinke
  • Klaus Dethloff
  • Irina V. Gorodetskaya
Article

Abstract

This paper describes atmospheric general circulation model climate change experiments in which the Arctic sea-ice thickness is either fixed to 3 m or somewhat more realistically parameterized in order to take into account essentially the spatial variability of Arctic sea-ice thickness, which is, to a first approximation, a function of ice type (perennial or seasonal). It is shown that, both at present and at the end of the twenty-first century (under the SRES-A1B greenhouse gas scenario), the impact of a variable sea-ice thickness compared to a uniform value is essentially limited to the cold seasons and the lower troposphere. However, because first-year ice is scarce in the Central Arctic today, but not under SRES-A1B conditions at the end of the twenty-first century, and because the impact of a sea-ice thickness reduction can be masked by changes of the open water fraction, the spatial and temporal patterns of the effect of sea-ice thinning on the atmosphere differ between the two periods considered. As a consequence, not only the climate simulated at a given period, but also the simulated Arctic climate change over the twenty-first century is affected by the way sea-ice thickness is prescribed.

Keywords

Arctic Sea-ice thickness Modelling Climate change 

References

  1. Alexander MA, Bhatt US, Walsh JE, Timlin MS, Miller JS, Scott JD (2004) The atmospheric response to realistic Arctic sea ice anomalies in an AGCM during winter. J Clim 17:890–905. doi:10.1175/1520-0442(2004)017<0890:TARTRA>2.0.CO;2 CrossRefGoogle Scholar
  2. Arzel O, Fichefet T, Goosse H (2006) Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model 12:401–415. doi:10.1016/j.ocemod2005.08.002 CrossRefGoogle Scholar
  3. Chalita S, Le Treut H (1994) The albedo of temperate and boreal forest and the Northern Hemisphere climate: a sensitivity experiment using the LMD GCM. Clim Dyn 10:231–240. doi:10.1007/BF00208990 CrossRefGoogle Scholar
  4. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Science Report 96-4, Dan Meteorol Inst, Copenhagen, 51 ppGoogle Scholar
  5. Comiso JC, Parkinson CL, Gersten R, Stok L (2008) Accelerated decline in the Arctic sea ice cover. Geophys Res Lett 35:L01703. doi:10.1029/2007GL031972 CrossRefGoogle Scholar
  6. Dethloff K, Rinke A, Lehmann R, Christensen JH, Botzet M, Machenhauer B (1996) A regional climate model of the Arctic atmosphere. J Geophys Res 101:23401–23422. doi:10.1029/96JD02016 Google Scholar
  7. Dethloff K, Rinke A, Benkel A, Køltzow M, Sokolova E, Kumar Saha S, Handorf D, Dorn W, Rockel B, Von Storch H, Haugen JE, Røed LP, Roeckner E, Christensen JH, Stendel M (2006) A dynamical link between the Arctic and the global climate system. Geophys Res Lett 33:L03703. doi:10.1029/2005GL025245 CrossRefGoogle Scholar
  8. Dorn W, Dethloff K, Rinke A, Kurgansky M (2008) The recent decline of the Arctic summer sea-ice cover in the context of internal climate variability. Open Atmos Sci J 2:91–100. doi:10.2174/1874282300802010091 CrossRefGoogle Scholar
  9. Fetterer F, Untersteiner N (1998) Observations of melt ponds on Arctic sea ice. J Geophys Res 103:24821–24835. doi:10.1029/98JC02034 CrossRefGoogle Scholar
  10. Flato GM, Hibler WD (1995) 1995: Ridging and strength in modeling the thickness distribution of Arctic sea ice. J Geophys Res 100:18611–18626. doi:10.1029/95JC02091 CrossRefGoogle Scholar
  11. Gerdes R (2008) Atmospheric response to changes in Arctic sea ice thickness. Geophys Res Lett 33:L18709. doi:10.1029/2006GL027146 CrossRefGoogle Scholar
  12. Giles KA, Laxon SW, Ridout AL (2008) Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys Res Lett 35:L22502. doi:10.1029/2008GL035710 CrossRefGoogle Scholar
  13. Gorodetskaya IV, Tremblay B (2008) Arctic cloud properties and radiative forcing from observations and their role in sea ice decline predicted by the NCAR CCSM3 model during the 21st century. In: DeWeaver E, Bitz CM, Tremblay B (eds) Arctic sea ice decline: observations, projections, mechanisms, and implications. Geophys Monogr Ser, AGU, Washington, vol 180, pp 213–268Google Scholar
  14. Hall A (2004) The role of surface albedo feedback in climate. J Clim 17:1550–1568. doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2 CrossRefGoogle Scholar
  15. Harms IH, Schrum C, Hatten K (2005) Numerical sensitivity studies on the variability of climate-relevant processes in the Barents Sea. J Geophys Res 110:C06002. doi:10.1029/2004JC002559 CrossRefGoogle Scholar
  16. Holland MM, Bitz CM, Tremblay B (2008) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L33503. doi:10.1029/2006GL028024 Google Scholar
  17. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, LeVan P, Li Z-X, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0 CrossRefGoogle Scholar
  18. Huwald H, Tremblay L-B, Blatter H (2005) Reconciling different observational data sets from Surface Heat Budget of the Arctic Ocean (SHEBA) for model validation purposes. J Geophys Res 110:C05009. doi:10.1029/2003JC002221 CrossRefGoogle Scholar
  19. Køltzow M (2007) The effect of a new snow and sea ice albedo scheme on regional climate model simulations. J Geophys Res 112:D07110. doi:10.1029/2006JD007693 CrossRefGoogle Scholar
  20. Krinner G, Genthon C, Li ZX, Le Van P (1997) Studies of the Antarctic climate with a stretched grid GCM. J Geophys Res 102:13731–13745. doi:10.1029/96JD03356 CrossRefGoogle Scholar
  21. Krinner G, Mangerud J, Jakobsson M, Crucifix M, Ritz C, Svendsen JI (2004) Enhanced ice sheet growth in Eurasia owing to adjacent ice-dammed lakes. Nature 427:429–432. doi:10.1038/nature02233 CrossRefGoogle Scholar
  22. Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005) A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem Cycles 19:GB1015. doi:10.1029/2003GB002199 CrossRefGoogle Scholar
  23. Krinner G, Boucher O, Balkanski Y (2006) Ice-free glacial northern Asia due to dust deposition on snow. Clim Dyn 27:613–625. doi:10.1007/s00382-006-0159-z CrossRefGoogle Scholar
  24. Krinner G, Magand O, Simmonds I, Genthon C, Dufresne J-L (2007) Simulated Antarctic precipitation and surface mass balance at the end of the 20th and 21st centuries. Clim Dyn 28:215–230. doi:10.1007/s00382-006-0177-x CrossRefGoogle Scholar
  25. Krinner G, Guicherd B, Ox K, Genthon C, Magand O (2008) Influence of oceanic boundary conditions in simulations of Antarctic climate and surface mass balance change during the coming century. J Clim 21:938–962. doi:10.1175/2007JCLI1690.1 CrossRefGoogle Scholar
  26. Kwok R (2007) Near zero replenishment of the Arctic multiyear sea ice cover at the end of 2005 summer. Geophys Res Lett 34:L05501. doi:10.1029/2006GL028737 CrossRefGoogle Scholar
  27. Laxon S, Peacock N, Smith S (2003) High interannual variability of sea ice thickness in the Arctic region. Nature 425:947–950. doi:10.1038/nature02050 Google Scholar
  28. Liu Y, Key JR (2003) Detection and analysis of clear-sky, low-level atmospheric temperature inversions with MODIS. J Atmos Ocean Technol 20:1727–1737. doi:10.1175/1520-0426(2003)020<1727:DAAOCL>2.0.CO;2 CrossRefGoogle Scholar
  29. Liu Y, Key JR, Schweiger A, Francis J (2006) Characteristics of satellite-derived clear-sky atmospheric temperature inversion strength in the Arctic, 1980–1996. J Clim 19:4902–4913. doi:10.1175/JCLI3915.1 CrossRefGoogle Scholar
  30. Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 concentration in the atmosphere. J Geophys Res 85:5529–5554. doi:10.1029/JC085iC10p05529 CrossRefGoogle Scholar
  31. Marsland SJ, Haak H, Jungclaus JH, Latif M, Roske F (2003) The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model 5:91–127. doi:10.1016/S1463-5003(02)00015-X CrossRefGoogle Scholar
  32. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:L24501. doi:10.1029/2007GL032043 CrossRefGoogle Scholar
  33. Maykut GA, McPhee MG (1995) 1995: Solar heating of the Arctic mixed layer. J Geophys Res 100:24691–24703. doi:10.1029/95JC02554 CrossRefGoogle Scholar
  34. Meehl GA, Washington WM, Santer BD, Collins WD, Arblaster JM, Hu A, Lawrence DM, Teng H, Buja LE, Strand WG (2006) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19:2597–2616. doi:10.1175/JCLI3746.1 CrossRefGoogle Scholar
  35. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset. Bull Am Metab Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  36. Murray R, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme. Aust Metab Mag 39:167–180Google Scholar
  37. Murray R, Simmonds I (1995) Responses of climate and cyclones to reduction in Arctic winter sea ice: leads and polynyas. J Geophys Res 100:4791–4806. doi:10.1029/94JC02206 CrossRefGoogle Scholar
  38. Nakicenovic N et al (2000) IPCC special report on emissions scenarios. Cambridge University Press, London, p 599Google Scholar
  39. Nicholls N (2001) The insignificance of significance testing. Bull Am Metab Soc 82:981–986. doi:10.1175/1520-0477(2001)082<0981:CAATIO>2.3.CO;2 CrossRefGoogle Scholar
  40. Perovich DK, Elder B (2002) Estimates of ocean heat flux at SHEBA. Geophys Res Lett 29:1344. doi:10.1029/2001GL014171 CrossRefGoogle Scholar
  41. Perovich DK, Grenfell TC, Light B, Hobbs PV (2002) Seasonal evolution of the albedo of multiyear Arctic sea ice. J Geophys Res 107:C8044. doi:10.1029/2000JC000438 CrossRefGoogle Scholar
  42. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  43. Rinke A, Maslowski W, Dethloff K, Clement J (2006) Influence of sea ice on the atmosphere: a study with an Arctic atmospheric regional climate model. J Geophys Res 111:D16103. doi:10.1029/2005JD006957 CrossRefGoogle Scholar
  44. Robock A (1983) Ice and snow feedbacks and the latitudinal and seasonal distribution of climate sensitivity. J Atmos Sci 40:986–997. doi:10.1175/1520-0469(1983)040<0986:IASFAT>2.0.CO;2 CrossRefGoogle Scholar
  45. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part 1: model description. Max-Planck-Institut für Meteorologie, Report No. 349, Hamburg. http://www.mpimet.mpg.de/fileadmin/publikationen/Reports/max_scirep_349.pdf
  46. Rothrock DA, Percival DB, Wensnahan M (2008) The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. J Geophys Res 113:C05003. doi:10.1029/2007JC004252 CrossRefGoogle Scholar
  47. Schäfer-Neth C, Paul A (2003) Gridded global LGM SST and salinity reconstruction. IGBP PAGES/World Data Center for Paleoclimatology, Boulder Data Contribution Series #2003-046. NOAA/NGDC Paleoclimatology Program, Boulder CO, USAGoogle Scholar
  48. Serreze MC, Holland MM, Stroeve J (2007) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536. doi:10.1126/science.1139426 CrossRefGoogle Scholar
  49. Shirasawa K, Ingram RG, Hudier EJ-J (1997) Oceanic heat fluxes under thin sea ice in Saroma-ko Lagoon, Hokkaido, Japan. J Mar Syst 11:9–19. doi:10.1016/S0924-7963(96)00023-1 CrossRefGoogle Scholar
  50. Simmonds I, Keay K (2000) Mean Southern hemisphere extratropical cyclone behaviour in the 40-year NCEP-NCAR analysis. J Clim 13:873–885. doi:10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2 CrossRefGoogle Scholar
  51. Simmonds I, Murray RJ (1999) Southern extratropical cyclone behaviour in ECMWF analyses during the FROST special observing periods. Weather Forecast 14:878–891. doi:10.1175/1520-0434(1999)014<0878:SECBIE>2.0.CO;2 CrossRefGoogle Scholar
  52. Taylor K, Stouffer R (2008) A summary of experiments proposed for CMIP5. Presentation at the 12th session of the JSC/CLIVAR working group on coupled modelling, Paris, September 2008. http://www.clivar.org/organization/wgcm/wgcm-12/wgcm12.php#reports
  53. UK Meteorological Office Hadley Centre (2008) HadISST 1.1—global sea-ice coverage and SST (1870-Present). British Atmospheric Data Centre. Digital media available from http://badc.nerc.ac.uk/data/hadisst/
  54. Worby AP, Geiger CA, Paget MJ, van Woert ML, Ackley SF, DeLiberty LL (2008) Thickness distribution of Antarctic sea ice. J Geophys Res 113:C05S92. doi:10.1029/2007JC004254 CrossRefGoogle Scholar
  55. Zhang X, Walsh JE (2006) Toward a seasonally ice-covered Arctic ocean: scenarios from the IPCC AR4 model simulations. J Clim 19:730–1747. doi:10.1175/JCLI3767.1 Google Scholar
  56. Zhang X, Sorteberg A, Zhang J, Gerdes R, Comiso JC (2008) Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys Res Lett 35:L22701. doi:10.1029/2008GL035607 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Gerhard Krinner
    • 1
    • 2
  • Annette Rinke
    • 1
  • Klaus Dethloff
    • 1
  • Irina V. Gorodetskaya
    • 2
  1. 1.Alfred Wegener Institute for Polar and Marine ResearchPotsdamGermany
  2. 2.Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE)INSU-CNRS and UJF GrenobleSaint Martin d’Hères CedexFrance

Personalised recommendations