Advertisement

Climate Dynamics

, Volume 34, Issue 2–3, pp 399–417 | Cite as

Impact of stratospheric variability on tropospheric climate change

  • Mauro Dall’AmicoEmail author
  • Peter A. Stott
  • Adam A. Scaife
  • Lesley J. Gray
  • Karen H. Rosenlof
  • Alexey Yu. Karpechko
Article

Abstract

An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.

Keywords

Simulations of recent climate with natural and anthropogenic forcings assessed by the IPCC 2007 AR4 Observed ozone distributions Quasi-biennial oscillation (QBO) of stratospheric equatorial zonal wind Variability and trends at the tropopause and in the troposphere Response to the volcanic eruptions of El Chichón and Mt. Pinatubo 

Notes

Acknowledgments

Funding was provided by the UK National Environment Research Council. Peter Stott and Adam Scaife were supported by the Joint DECC, Defra and MoD Integrated Climate Programme—DECC/Defra (GA01101), MoD (CBC/2B/0417_Annex C5). We wish to thank Keith Shine, Terry Davies, Jason Lowe, Gareth Jones, Scott Osprey, Warwick Norton, Jonathan Gregory, Oliver Browne, Gareth Marshall, Michael Ponater, Robert Sausen and Veronika Eyring for their help in acquiring and processing data, their illuminating suggestions and their support. We also wish to thank all those people at the UK Met Office and various UK Universities who contributed throughout the years to the development of the Hadley Centre Global Environmental Model and ancillary datasets.

References

  1. Baldwin MP, Dunkerton TJ (1999) Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geosphys Res 104:30937–30946CrossRefGoogle Scholar
  2. Baldwin MP, Gray LJ, Dunkerton TJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersley JS, Marquardt C, Sato K, Takahashi M (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229CrossRefGoogle Scholar
  3. Baldwin MP, Stephenson DB, Thompson DWJ, Dunkerton TJ, Charlton AJ, O’Neill A (2003) Stratospheric memory and skill of extended-range weather forecasts. Science 301:636–640CrossRefGoogle Scholar
  4. Baldwin MP, Dameris M, Shepherd TG (2007) How will the stratosphere affect climate change? Science 316:1576–1577CrossRefGoogle Scholar
  5. Black RX (2002) Stratospheric forcing of surface climate in the Arctic Oscillation. J Clim 15:268–277CrossRefGoogle Scholar
  6. Boville BA (1984) The influence of the polar night jet on the tropospheric circulation in a GCM. J Atmos Sci 41:1132–1142CrossRefGoogle Scholar
  7. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  8. Collimore CC, Hitchman M, Martin DW (1998) Is there a quasi-biennial oscillation in tropical deep convection? Geophys Res Lett 25:333–336CrossRefGoogle Scholar
  9. Collimore CC, Martin DW, Hitchman M, Huesmann A, Waliser D (2003) On the relationship between the QBO and tropical deep convection. J Clim 16:2552–2568CrossRefGoogle Scholar
  10. Cordero EC, Forster PM de F (2006) Stratospheric variability and trends in models used for the IPCC AR4. Atmos Chem Phys 6:5369–5380CrossRefGoogle Scholar
  11. Coughlin K, Tung K-K (2001) QBO signal found at the extratropical surface through Northern annular modes. Geophys Res Lett 28:4563–4566CrossRefGoogle Scholar
  12. Croocks S, Gray LJ (2005) Characterization of the 11-year solar signal using a multiple regression analysis of the ERA-40 dataset. J Clim 18:996–1015CrossRefGoogle Scholar
  13. Dall’Amico M, Egger J (2007) Empirical Master equations. Part II: Application to stratospheric QBO, solar cycle, and Northern annular mode. J Atmos Sci 64:2296–3015Google Scholar
  14. Dall’Amico M, Gray LJ, Rosenlof, KH, Scaife AA, Shine KP, Stott PA (2009) Stratospheric temperature trends: impact of ozone variability and the QBO. Clim Dyn. doi: 10.1007/s00382-009-0604-x
  15. Daniel JS, Solomon S, Albritton DL (1995) On the evaluation of halocarbon radiative forcing and global warming potentials. J Geophys Res 100:1271–1285CrossRefGoogle Scholar
  16. Eyring V, Waugh DW, Bodeker GE, Cordero E, Akiyoshi H, Austin J, Beagley SR, Boville BA, Braesicke P, Brühl C, Butchart N, Chipperfield MP, Dameris M, Deckert R, Deushi M, Frith SM, Garcia RR, Gettelman A, Giorgetta MA, Kinnison DE, Mancini E, Manzini E, Marsh DR, Matthes S, Nagashima T, Newman PA, Nielsen JE, Pawson S, Pitari G, Plummer DA, Rozanov E, Schraner M, Scinocca JF, Semeniuk K, Shepherd TG, Shibata K, Steil B, Stolarski RS, Tian W, Yoshiki M (2007) Multimodel projections of stratospheric ozone in the 21st century. J Geophys Res 112:D16303. doi: 10.1029/2006JD008332 CrossRefGoogle Scholar
  17. Forster PM de F, Shine KP (2002) Assessing the climate impact of trends in stratospheric water vapor. Geophys Res Lett 29, doi  10.1029/2001GL013909
  18. Forster PM, Bodeker GE, Schofield R, Solomon S, Thompson D (2007) Effects of ozone cooling in the tropical lower stratosphere and upper troposphere. Geophys Res Lett 34. doi: 10.1029/2007GL031994
  19. Gillet NP, Thompson WJ (2003) Simulation of recent Southern hemisphere climate change. Science 302:273–275CrossRefGoogle Scholar
  20. Gillett NP, Allan RJ, Ansell TJ (2005) Detection of external influence on sea level pressure with a multi-model ensemble. Geophys Res Lett 32:L19714. doi: 10.1029/2005GL023640 CrossRefGoogle Scholar
  21. Giorgetta MA, Bengtsson L, Arpe K (1999) An investigation of QBO signals in the East Asian and Indian monsoon in GCM experiments. Clim Dyn 15:435–450CrossRefGoogle Scholar
  22. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26:459–462CrossRefGoogle Scholar
  23. Gray LJ, Pyle JA (1989) A two dimensional model of the quasi-biennial oscillation of ozone. J Atmos Sci 46:203–220CrossRefGoogle Scholar
  24. Groisman PY (1992) Possible regional climate consequences of the Pinatubo eruption: an empirical approach. Geophys Res Lett 19:1603–1606CrossRefGoogle Scholar
  25. Haigh JD (2003) The effects of solar variability on the Earth’s climate. Phil Trans R Soc Lond 361:95–111CrossRefGoogle Scholar
  26. Haigh JD, Blackburn M, Day R (2005) The response of tropospheric circulation to perturbations in lower stratospheric temperature. J Clim 18:3672–3685CrossRefGoogle Scholar
  27. Hansen J, Sato M, Ruedy R (1997) Radiative forcing and climate response. J Geophys Res 102:6831–6864CrossRefGoogle Scholar
  28. Hare SHE, Gray LJ, Lahoz WA, O’Neill A (2005) On the design of practicable numerical experiments to investigate stratospheric temperature change atmos. Sci Lett 6(2):123–127. doi: 10.1002/asl.101 Google Scholar
  29. Holton JR, Tan H-C (1980) The Influence of the equatorial quasi-biennial oscillation on the global circulation at 50 mb. J Atmos Sci 37:2200–2208CrossRefGoogle Scholar
  30. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis. Cambridge University Press, LondonGoogle Scholar
  31. Hurrel JW, van Loon H (1994) A modulation of the atmospheric annual cycle in the Southern Hemisphere. Tellus A 46:325–338CrossRefGoogle Scholar
  32. Intergovernmental Panel on Climate Change: Climate Change (2007) The physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, LondonGoogle Scholar
  33. Johns TC, Durman CF, Banks HT, Roberts MJ, McLaren AJ, Riddley JK, Senior CA, Williams KD et al (2006) The new Hadley Centre climate model (HadGEM1). Evaluation of coupled simulations. J Clim 19:1327–1353CrossRefGoogle Scholar
  34. Jones PD, New M, Parker DE, Martin S, Rigor IG (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37:173–199CrossRefGoogle Scholar
  35. Jones GJ, Gregory JM, Stott PA, Tett SFB, Thorpe RB (2005) An AOGCM simulation of the climate response to a volcanic super-eruption. Clim Dyn 25:725–738CrossRefGoogle Scholar
  36. Joshi M, Shine KP (2003) A GCM study of volcanic eruptions as a cause of increased stratospheric water vapour. J Clim 16:3525–3534CrossRefGoogle Scholar
  37. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–441CrossRefGoogle Scholar
  38. Karpechko AYu, Gillett NP, Marshall GJ, Scaife AA (2008) Stratospheric influence on circulation changes in the Southern Hemisphere troposphere in coupled climate models. Geophys Res Lett 35:L20806. doi: 10.1029/2008GL035354 CrossRefGoogle Scholar
  39. Kiehl JT, Schneider TL, Poltmann RW, Solomon S (1999) Climate forcing due to tropospheric and stratospheric ozone. J Geophys Res 104:31239–31254CrossRefGoogle Scholar
  40. Kindem IT, Christiansen B (2001) Tropospheric response to stratospheric ozone loss. Geophys Res Lett 28:1547–1550CrossRefGoogle Scholar
  41. Kistler R et al (2001) The NCEP–NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull Am Meteorol Soc 82:247–267CrossRefGoogle Scholar
  42. Labitzke K, van Loon H (1999) The stratosphere: phenomena, history, and relevance. Springer, HeidelbergGoogle Scholar
  43. Lacis AA, Wuebbles DJ, Logan JA (1990) Radiative forcing of climate by changes in the vertical distribution of ozone. J Geophys Res 95:9971–9981. doi: 10.1029/90JD00092 CrossRefGoogle Scholar
  44. Li D, Shine KP, Gray LJ (1995) The role of ozone-induced diabatic heating anomalies in the quasibiennial oscillation. Q J R Meteorol Soc 121:937–943CrossRefGoogle Scholar
  45. Marshall GJ (2003) Trends in the Southern annular mode from observations and reanalyses. J Clim 16:4134–4143CrossRefGoogle Scholar
  46. Marshall GJ, Stott PA, Turner J, Connolley WM, King JC, Lachlan-Cope TA (2004) Causes of exceptional atmospheric circulation changes in the Southern Hemisphere. Geophys Res Lett 31:L14205. doi: 10.1029/2004GL019952 CrossRefGoogle Scholar
  47. Martin GM, Ringer MA, Pope VD, Jones A, Dearden C, Hinton TJ (2006) The Physical properties of the atmosphere in the new Hadley Centre global environmental model (HadGEM1). Part I: Model description and global climatology. J Clim 19:1274–1301CrossRefGoogle Scholar
  48. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper CB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, chap 10. Cambridge University Press, CambridgeGoogle Scholar
  49. Norton WA (2003) Sensitivity of Northern Hemisphere surface climate to simulation of the stratospheric polar vortex. Geophys Res Lett 30. doi: 10.1029/2003GL016958
  50. Pascoe CL, Gray LJ, Crooks SA, Juckes MN, Baldwin MP (2005) The quasi-biennial oscillation: analysis using ERA-40 data. J Geophys Res 110:D08105. doi: 10.1029/2004JD004941 CrossRefGoogle Scholar
  51. Perlwitz J, Pawson S, Fogt RL, Nielsen JE, Neff WD (2008) Impact of stratospheric ozone hole recovery on Antarctic climate. Geophys Res Lett 35:L08714. doi: 10.1029/2008GL033317 CrossRefGoogle Scholar
  52. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J., Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  53. Randel WJ, Wu F (1995) TOMS total ozone trends in potential vorticity coordinates. Geophys Res Lett 22:683–686CrossRefGoogle Scholar
  54. Randel WJ, Wu F (1999) A stratospheric ozone trends dataset for global modelling. Geophys Res Lett 26:3089–3092CrossRefGoogle Scholar
  55. Randel WJ, Wu F (2007) A stratospheric ozone distribution data set for 1979–2005: variability, trends, and comparisons with column ozone data. J Geophys Res 112:D06313. doi: 10.1029/2006JD007339 CrossRefGoogle Scholar
  56. Randel WJ, Stolarski R, Cunnold DM, Logan JA, Newchurch MJ, Zawodny JM (1999) Trends in the vertical distribution of ozone. Science 285:1689–1692CrossRefGoogle Scholar
  57. Reed RJ, Campbell WJ, Rasmussen LA, Rogers DG (1961) Evidence of the downward-propagating annual wind reversal in the equatorial stratosphere. J Geophys Res 66:813–818CrossRefGoogle Scholar
  58. Ringer MA, Martin G, Greeves C, Hinton T, Inness P, James P, Pope V, Scaife J, Slingo AA, Stratton R, Yang G (2006) The physical properties of the atmosphere in the New Hadley Centre Global Atmospheric Model (HadGEM1): Part II: Global variability and regional climate. J Clim 19:1302–1326CrossRefGoogle Scholar
  59. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  60. Robock A, Mao J (1992) Winter warming from large volcanic eruptions. Geophys Res Lett 19:2405–2408CrossRefGoogle Scholar
  61. Robock A, Mao J (1995) The volcanic signal in surface temperature observations. J Clim 8:1086–1103CrossRefGoogle Scholar
  62. Santer BD, Wehner MF, Wigley TML, Sausen R, Meehl GA, Taylor KE, Ammann C, Arblaster J, Washington WM, Boyle JS, Bruggemann W (2003) Contributions of anthropogenic and natural forcings to recent tropopause height changes. Science 301:479–483CrossRefGoogle Scholar
  63. Santer BD, Wigley TML, Simmons AJ, Kållberg PW, Kelly GA, Uppala SM, Ammann C, Boyle JS, Brüggemann W, Doutriaux C, Fiorino M, Mears C, Meehl GA, Sausen R, Taylor KE, Washington WM, Wehner MF, Wentz FJ (2004) Identification of anthropogenic climate change using a second-generation reanalysis. J Geophys Res 109:D21104. doi: 10.1029/2004JD005075 CrossRefGoogle Scholar
  64. Santer BD, Penner JE, Thorne PW (2006) How well can the observed vertical temperature changes be reconciled with our understanding of the causes of these changes? In: Karl TR, Hassol SJ, Miller CD, Murray WL (eds) Temperature trends in the lower atmosphere: steps for understanding and reconciling differences. A report by the climate change science program and the subcommittee on global change research, Washington, DC, USAGoogle Scholar
  65. Sausen R, Santer BD (2003) Use of changes in tropopause height to detect human influences on climate. Meteorol Z 12:131–136CrossRefGoogle Scholar
  66. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Let 32:L18715CrossRefGoogle Scholar
  67. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111. doi: 10.1029/2006JD007363
  68. Simmons AJ, Jones PD, da Costa Bechtold V, Beljaars ACM, Kållberg PW, Saarinen S, Uppala SM, Viterbo P, Wedi N (2004) Comparison of trends and low-frequency variability in CRU, ERA-40 and NCEP/NCAR analyses of surface air temperature. J Geophys Res 109:D24115. doi: 10.1029/2004JD005306 CrossRefGoogle Scholar
  69. Son SW, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Sheperd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere Westerly Jet. Science 320:1486–1489. doi: 10.1126/science.1155939 CrossRefGoogle Scholar
  70. Stenchikov G, Hamilton K, Robock A, Ramaswamy V, Schwarzkopf MD (2004) Arctic oscillation response to the 1991 Pinatubo eruption in the SKyHI general circulation model with a realistic quasi-biennial oscillation. J Geophys Res 109. doi: 10.1029/2003JD003699
  71. Stott PA, Tett SFB, Jones GS, Allen MR, Jngram WJ, Mitchell JFB (2001) Attribution of twentieth century temperature change to natural and anthropogenic causes. Clim Dyn 17:1–21CrossRefGoogle Scholar
  72. Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC, Thelen J-C (2006) Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J Clim 19:2763–2782CrossRefGoogle Scholar
  73. Stuber N, Ponater M, Sausen R (2005) Why radiative forcing might fail as a predictor of climate change. Clim Dyn 24:497–510CrossRefGoogle Scholar
  74. Tett SFB, Jones GS, Stott PA, Hill DC, Michell JFB, Allen MR, Ingram WJ, Johns TC, Johnson CE, Jones A, Roberts DL, Sexton DMH, Woodage MJ (2002) Estimation of natural and anthropogenic contributions to twentieth century temperature change. J Geophys Res 107(16):4306. doi: 10.1029/2000JD000028 CrossRefGoogle Scholar
  75. Thompson DWJ, Solomon S (2002) Interpretation of recent Southern Hemisphere climate change. Science 296:895–899CrossRefGoogle Scholar
  76. Thompson DW J, Wallace JM (2000) Annular modes in the extratropical circulation Part I: Month-to-month variability. J Clim 13:1000–1016CrossRefGoogle Scholar
  77. Thompson DWJ, Baldwin MP, Wallace MJ (2002) Stratospheric connection to Northern Hemisphere wintertime weather: implications for predictability. J Clim 15:1421–1428CrossRefGoogle Scholar
  78. Thorne PW, Karl TR, Coleman H, Folland CK, Murray WL, Parker DE, Ramaswamy V, Rossow WB, Scaife AA, Tett SFB (2005) Vertical profiles of temperature trends. Bull Am Meteorol Soc 86:1472–1476Google Scholar
  79. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick J A, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  80. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold VD, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  81. van Loon H, Labitzke K (1987) The Southern Oscillation Part V: The anomalies in the lower stratosphere of the Northern Hemisphere in winter and a comparison with the quasi-biennial oscillation. Mon Weather Rev 115:357–369CrossRefGoogle Scholar
  82. Veryard RG, Ebdon RA (1961) Fluctuations in tropical stratospheric winds. Meteorol Mag 90:125–143Google Scholar
  83. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, LondonGoogle Scholar
  84. Wallace JM (2000) North Atlantic Oscillation/annular mode: two paradigms-one phenomenon. Q J R Meteorol Soc 126:791–805CrossRefGoogle Scholar
  85. Zwiers FW, von Storch H (1995) Taking serial correlation into account in tests of the mean. J Clim 8:336–351CrossRefGoogle Scholar

Copyright information

© Crown Copyright 2009

Authors and Affiliations

  • Mauro Dall’Amico
    • 1
    • 2
    Email author
  • Peter A. Stott
    • 3
  • Adam A. Scaife
    • 3
  • Lesley J. Gray
    • 1
  • Karen H. Rosenlof
    • 4
  • Alexey Yu. Karpechko
    • 5
  1. 1.NCAS ClimateUniversity of ReadingReadingUK
  2. 2.Deutsches Zentrum für Luft- und RaumfahrtInstitut für Physik der AtmosphäreOberpfaffenhofenGermany
  3. 3.Met Office Hadley CentreExeterUK
  4. 4.NOAA Earth System Research LaboratoryBoulderUSA
  5. 5.Climatic Research Unit, School of Environmental SciencesUniversity of East AngliaNorwichUK

Personalised recommendations