Climate Dynamics

, Volume 34, Issue 7–8, pp 1115–1128 | Cite as

The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750

  • M. Küttel
  • E. Xoplaki
  • D. Gallego
  • J. Luterbacher
  • R. García-Herrera
  • R. Allan
  • M. Barriendos
  • P. D. Jones
  • D. Wheeler
  • H. Wanner


Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.


Sea level pressure Climate field reconstructions Logbooks Instrumental pressure series Europe Principal component regression 



We are grateful for accessing instrumental pressure series as well as information from the CLIWOC project. A. Moberg and P. Woodworth kindly provided the instrumental pressure series from Stockholm and Liverpool. The authors thank Franz Kuglitsch for homogenizing the instrumental pressure series. MK, JL, and EX have been supported by the Swiss National Science Foundation (SNSF) through its National Center of Competence in Research on Climate (NCCR Climate) project PALVAREX2. MK and DG were also supported by the European Science Foundation (ESF) activity entitled Mediterranean Climate Variability and Predictability (MedCLIVAR). EX has also been supported by the EU/FP6 project CIRCE (grant 036961), JL by the EU/FP7 project ACQWA (grant 212250), MB and DW by the MILLENNIUM Project (IP 017008-2), PDJ by the U.S. Department of Energy (grant DE-FG02-98ER62601). RA was supported by the international ACRE (atmospheric circulation reconstructions over the Earth) initiative. ACRE is an international collaborative project led by a consortium of the Queensland Climate Change Centre of Excellence (QCCCE) in Australia, the Met Office Hadley Centre in the UK, and the US National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) and Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado. This publication was financially supported by the Foundation Marchese Francesco Medici del Vascello. Finally, we thank the reviewers for the constructive comments that improved the quality of the paper. The SLP reconstruction is available from the World Data Center for Paleoclimatology:

Supplementary material

382_2009_577_MOESM1_ESM.pdf (1 mb)
Seasonal average number of records per 8° x 8° grid box CLIWOC 2.1 1750-1850 (PDF 1061 kb)
382_2009_577_MOESM2_ESM.pdf (360 kb)
Temporal evolution of the seasonal u-vector [m/s] 1850-2002 for different 8° x 8° grid boxes spread across the North Atlantic using the full, i.e. not sampled ICOADS data set (black thick line) and sampling ICOADS according to the average number of records in a particular grid box in CLIWOC 1750-1850 (see supp. Online Fig. 1). The red line is based on one single sampling iteration, the blue line is the median of 5 iterations. The title of each box indicates the centre of the grid box and the average number of records of this particular box in CLIWOC 1750-1850 and ICOADS 1850-2002, respectively. The legend in the box refers to the mean and standard deviation of the series over the 153 year period (PDF 359 kb)
382_2009_577_MOESM3_ESM.pdf (210 kb)
Spring mean SLP from independent instrumental pressures series (red lines) and as reconstructed at the corresponding 5°x5° grid box (black lines) for Palermo (Barriendos et al. 2009), Liverpool (Woodworth 2006), and Stockholm (Moberg et al. 2002). The correlation coefficients are 0.73 (Palermo), 0.64 (Liverpool), and 0.87 (Stockholm), all significant at the 99% significance level (PDF 210 kb)
382_2009_577_MOESM4_ESM.pdf (213 kb)
As Supp. Online Fig. 3, but for summer. The correlation coefficients are 0.68 (Palermo), 0.35 (Liverpool), and 0.82 (Stockholm), all except for Liverpool (p<0.1) being significant at the 99% significance level (PDF 213 kb)
382_2009_577_MOESM5_ESM.pdf (209 kb)
As Supp. Online Fig. 3, but for autumn. The correlation coefficients are 0.69 (Palermo), 0.87 (Liverpool), and 0.88 (Stockholm), all significant at the 99% significance level (PDF 208 kb)
382_2009_577_MOESM6_ESM.pdf (73 kb)
Overview of the instrumental pressure series (PDF 72 kb)


  1. Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842CrossRefGoogle Scholar
  2. Ammann CM, Wahl ER (2007) The importance of the geophysical context in statistical evaluations of climate reconstruction procedures. Clim Change 85:71–88CrossRefGoogle Scholar
  3. Ansell TJ, Jones PD, Allan RJ, Lister D, Parker DE, Brunet M, Moberg A, Jacobeit J, Brohan P, Rayner NA, Aguilar E, Alexandersson H, Barriendos M, Brandsma T, Cox NJ, Della-Marta PM, Drebs A, Founda D, Gerstengarbe F, Hickey K, Jonsson T, Luterbacher J, Nordli O, Oesterle H, Petrakis M, Philipp A, Rodwell MJ, Saladie O, Sigro J, Slonosky V, Srnec L, Swail V, Garcia-Suarez AM, Tuomenvirta H, Wang X, Wanner H, Werner P, Wheeler D, Xoplaki E (2006) Daily mean sea level pressure reconstructions for the European-North Atlantic region for the period 1850–2003. J Clim 19:2717–2742CrossRefGoogle Scholar
  4. Barriendos M, Martín-Vide J, Peña JC, Rodríguez R (2002) Daily meteorological observations in Cadiz–San Fernando. Analysis of the documentary sources and the instrumental data content (1786–1996). Clim Change 53:151–170CrossRefGoogle Scholar
  5. Barriendos M et al. (2009) Recuperation of old sea level pressure series for the study of extreme weather events: Palermo, Paris, Armagh & Edinburgh (1780–1880). Int J Climatol (submitted)Google Scholar
  6. Bergström H, Moberg A (2002) Daily air temperature and pressure series for Uppsala (1722–1998). Clim Change 53:213–252CrossRefGoogle Scholar
  7. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe—the state of the art. Clim Change 70:363–430CrossRefGoogle Scholar
  8. Briffa KR, Jones PD, Wigley TML, Pilcher JR, Baillie MGL (1986) Climate reconstruction from tree rings: part 2, spatial reconstruction of summer mean sea-level pressure patterns over great-britain. J Clim 6:1–15CrossRefGoogle Scholar
  9. Briffa KR, Wigley TML, Jones PD, Pilcher JR, Hughes MK (1987) Patterns of tree-growth and related pressure variability in Europe. Dendrochronologia 5:35–59Google Scholar
  10. Casty C, Handorf D, Sempf M (2005a) Combined winter climate regimes over the North Atlantic/European sector 1766–2000. Geophys Res Lett 32:L13801. doi:10.1029/2005GL022431 CrossRefGoogle Scholar
  11. Casty C, Wanner H, Luterbacher J, Esper J, Bohm R (2005b) Temperature and precipitation variability in the European alps since 1500. Int J Climatol 25:1855–1880CrossRefGoogle Scholar
  12. Casty C, Raible CC, Stocker TF, Wanner H, Luterbacher J (2007) A European pattern climatology 1766–2000. Clim Dyn 29:791–805CrossRefGoogle Scholar
  13. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc C App 53:405–425CrossRefGoogle Scholar
  14. Chenoweth M (1996) Ship’s logbooks and “the year without a summer”. Bull Am Meteorol Soc 85:1689–1697CrossRefGoogle Scholar
  15. Cook E, Briffa K, Jones PD (1994) Spatial regression methods in dendroclimatology. A review and comparison of two techniques. Int J Climatol 14:379–402CrossRefGoogle Scholar
  16. Dünkeloh A, Jacobeit J (2003) Circulation dynamics of Mediterranean precipitation variability 1948–1998. Int J Climatol 23:1843–1866CrossRefGoogle Scholar
  17. Frydendahl K, Frich P, Hansen C (1992) Danish weather observations 1675–1715. Danish Meteorological Institute, Technical Report 92–3Google Scholar
  18. Gallego D, García-Herrera R, Ribera P, Jones PD (2005) Seasonal mean pressure reconstruction for the North Atlantic (1750–1850) based on early marine data. Clim Past 1:19–33CrossRefGoogle Scholar
  19. García-Herrera R, Können GP, Wheeler D, Prieto MR, Jones PD, Koek FB (2005a) CLIWOC: a climatological database for the world’s oceans 1750–1854. Clim Change 73:1–12CrossRefGoogle Scholar
  20. García-Herrera R, Wilkinson C, Koek FB, Prieto MR, Calvo N, Hernandez E (2005b) Description and general background to ships’ logbooks as a source of climatic data. Clim Change 73:13–36CrossRefGoogle Scholar
  21. Gordon GA, Lough JM, Fritts HC, Kelly PM (1985) Comparison of sea level pressure reconstructions from Western North American tree rings with proxy record of winter severity in Japan. J App Meteorol 24:1219–1224CrossRefGoogle Scholar
  22. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation. Regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  23. Hurrell JW, Van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  24. Jacobeit J, Jönsson P, Bärring L, Beck C, Ekström M (2001) Zonal indices for Europe 1780–1995 and running correlations with temperature. Clim Change 48:219–241CrossRefGoogle Scholar
  25. Jones PD, Salmon M (2005) Preliminary reconstructions of the North Atlantic Oscillation and the Southern Oscillation Index from measures of wind strength and direction taken during the cliwoc period. Clim Change 73:131–154CrossRefGoogle Scholar
  26. Jones PD, Davies TD, Lister DH, Slonosky V, Jonsson T, Barring L, Jonsson P, Maheras P, Kolyva-Machera F, Barriendos M, Martin-Vide J, Rodriguez R, Alcoforado MJ, Wanner H, Pfister C, Luterbacher J, Rickli R, Schuepbach E, Kaas E, Schmith T, Jacobeit J, Beck C (1999) Monthly mean pressure reconstructions for Europe for the 1780–1995 period. Int J Climatol 19:347–364CrossRefGoogle Scholar
  27. Koek FB, Können GP (2005) Determination of wind force and present weather terms: the Dutch case. Clim Change 73:79–95CrossRefGoogle Scholar
  28. Können GP, Koek FB (2005) Description of the cliwoc database. Clim Change 73:117–130CrossRefGoogle Scholar
  29. Koslowski G, Glaser R (1999) Variations in reconstructed ice winter severity in the western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Clim Change 41:175–191CrossRefGoogle Scholar
  30. Küttel M, Luterbacher J, Zorita E, Xoplaki E, Riedwyl N, Wanner H (2007) Testing a European winter surface temperature reconstruction in a surrogate climate. Geophys Res Lett 34:L07710. doi:10.1029/2006GL027,907 CrossRefGoogle Scholar
  31. Livezey RE, Smith TM (1999) Considerations for use of the Barnett and Preisendorfer (1987) algorithm for canonical correlation analysis of climate variations. J Clim 12:303–305Google Scholar
  32. Ludlum DM (1968) Early American Winters II 1821–1870. American Meteorological Society, BostonGoogle Scholar
  33. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H (1999) Reconstruction of monthly NAO and EU indices back to ad 1675. Geophys Res Lett 26:2745–2748CrossRefGoogle Scholar
  34. Luterbacher J, Rickli R, Tinguely C, Xoplaki E, Schüpbach E, Dietrich D, Hüsler J, Ambühl Pfister C, Beeli P, Dietrich U, Dannecker A, Davies TD, Jones PD, Slonosky V, Ogilvie AEJ, Maheras P, Kolyva-Machera F, Martin-Vide J, Barriendos M, Alcoforado MJ, Nunes MF, Jonsson T, Glaser R, Jacobeit J, Beck C, Philipp A, Beyer U, Kaas E, Schmith T, Barring L, Jonsson P, Racz L, Wanner H (2000) Monthly mean pressure reconstruction for the Late Maunder Minimum period (ad 1675–1715). Int J Climatol 20:1049–1066CrossRefGoogle Scholar
  35. Luterbacher J, Rickli R, Xoplaki E, Tinguely C, Beck C, Pfister C, Wanner H (2001) The Late Maunder Minimum (1675–1715): a key period for studying decadal scale climatic change in Europe. Clim Change 49:441–462CrossRefGoogle Scholar
  36. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  37. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  38. Luterbacher J, Liniger MA, Menzel A, Estrella N, Della-Marta PM, Pfister C, Rutishauser T, Xoplaki E (2007) The exceptional European warmth of autumn 2006 and winter 2007: historical context, the underlying dynamics and its phenological impacts. Geophys Res Lett 34:L12704. doi:10.1029/2007GL029951 CrossRefGoogle Scholar
  39. Mann ME, Rutherford S, Wahl E, Ammann C (2007) Robustness of proxy-based climate field reconstruction methods. J Geophys Res 12:D12109CrossRefGoogle Scholar
  40. Matti C, Pauling A, Küttel M, Wanner H (2009) Winter precipitation trends for two selected European regions over the last 500 years and their possible dynamical background. Theor App Climatol 95:9–26. doi:10.1007/s00,704–007–0361–x CrossRefGoogle Scholar
  41. Maugeri M, Buffoni L, Chlistovsky F (2002a) Daily Milan temperature and pressure series (1763–1998): history of the observations and data and metadata recovery. Clim Change 53:101–117CrossRefGoogle Scholar
  42. Maugeri M, Buffoni L, Delmonte B, Fassina A (2002b) Daily Milan temperature and pressure series (1763–1998): completing and homogenising the data. Clim Change 53:119–149CrossRefGoogle Scholar
  43. Maugeri M, Brunetti M, Monti F, Nanni T (2004) Sea-level pressure variability in the Po Plain (1765–2000) from homogenized daily secular records. Int J Climatol 24:437–455CrossRefGoogle Scholar
  44. Moberg A, Bergström H, Ruiz Krigsman J, Svanered O (2002) Daily air temperature and pressure series for Stockholm (1756–1998). Clim Change 53:171–212CrossRefGoogle Scholar
  45. Namias J (1948) Evolution of monthly mean circulation and weather patterns. Trans Am Geophys U29:777–788Google Scholar
  46. Paredes D, Trigo RM, García-Herrera R, Trigo IF (2006) Understanding precipitation changes in Iberia in early spring: weather typing and storm-tracking approaches. J Hydrometeor 7:101–113CrossRefGoogle Scholar
  47. Pauling A, Luterbacher J, Casty C, Wanner H (2006) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405CrossRefGoogle Scholar
  48. Prieto MR, Gallego D, García-Herrera R, Calvo N (2005) Deriving wind force terms from nautical reports through content analysis, the Spanish and French cases. Clim Change 73:37–55CrossRefGoogle Scholar
  49. Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Büntgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schär C, Wanner H (2006) Climate variability-observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 ad. Clim Change 79:9–29CrossRefGoogle Scholar
  50. Riedwyl N, Küttel M, Luterbacher J, Wanner H (2009) Comparison of climate field reconstruction techniques: application to Europe. Clim Dyn 32:381–395CrossRefGoogle Scholar
  51. Rodrigo FS, Esteban-Parra MJ, Pozo-Vazquez D, Castro-Diez Y (1999) A 500-year precipitation record in Southern Spain. Int J Climatol 19:1233–1253CrossRefGoogle Scholar
  52. Rodríguez R, Barriendos M, Jones PD, Martín-Vide J, Peña JC (2001) Long pressure series for Barcelona (Spain). Daily reconstruction and monthly homogenization. Int J Climatol 21:1693–1704CrossRefGoogle Scholar
  53. Rosendal HE (1970) Unusual general circulation pattern of early 1843. Mon Wea Rev 98:266–270CrossRefGoogle Scholar
  54. Schmutz C, Gyalistras D, Luterbacher J, Wanner H (2001) Reconstruction of monthly 700, 500 and 300 hPa geopotential height fields in the European and Eastern North Atlantic region for the period 1901–1947. Clim Res 18:181–193CrossRefGoogle Scholar
  55. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152CrossRefGoogle Scholar
  56. Slonosky VC, Yiou P (2002) Does the NAO index represent zonal flow? The influence of the NAO on North Atlantic surface temperature. Clim Dyn 19:17–30CrossRefGoogle Scholar
  57. Slonosky VC, Jones PD, Davies TD (1999) Homogenization techniques for European monthly mean surface pressure series. J Clim 12:2658–2672CrossRefGoogle Scholar
  58. Slonosky VC, Jones PD, Davies TD (2001) Atmospheric circulation and surface temperature in Europe from the 18th century to 1995. Int J Climatol 21:63–75CrossRefGoogle Scholar
  59. Trenberth KE (1990) Recent observed interdecadal climate changes in the Northern Hemisphere. Bull Am Meteorol Soc 71:989–993CrossRefGoogle Scholar
  60. Trenberth KE (1995) Atmospheric circulation climate changes. Clim Change 31:427–453CrossRefGoogle Scholar
  61. Trenberth K, Paolino DA (1980) The Northern Hemisphere sea level pressure data set: trends, errors and discontinuities. Mon Weather Rev 108:855–872CrossRefGoogle Scholar
  62. Villalba R, Cook ER, D’Arrigo RD, Jacoby GC, Jones PD, Salinger MJ, Palmer J (1997) Sea-level pressure variability around Antarctica since ad 1750 inferred from subantarctic tree-ring records. Clim Dyn 13:375–390CrossRefGoogle Scholar
  63. von Storch H, Zorita E (2005) Comment on “hockey sticks, principal components, and spurious significance” by S. McIntyre and R. McKitrick. Geophys Res Lett 32:L20701. doi:10.1029/2005GL022753 CrossRefGoogle Scholar
  64. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, p 513CrossRefGoogle Scholar
  65. von Storch H, Zorita E, González-Rouco F (2009) Assessement of three temperature reconstruction methods in the virtual reality of a climate simulation. Int J Earth Sci 98:67–82CrossRefGoogle Scholar
  66. Wanner H, Brönnimann S, Casty C, Gyalistras D, Luterbacher J, Stephenson D, Xoplaki E (2001) North Atlantic Oscillation. Concepts and studies. Surv Geophys 22:321–381CrossRefGoogle Scholar
  67. Wheeler DA (1987) The Trafalgar storm 22–29 October 1805. Meteorol Mag 116:197–205Google Scholar
  68. Wheeler D (2005) An examination of the accuracy and consistency of ships’ logbook weather observations and records. Clim Change 73:97–116CrossRefGoogle Scholar
  69. Wheeler D, García-Herrera R (2008) Ships’ logbooks in climatological research: reflections and prospects. Ann N Y Acad Sci 1146:1–15CrossRefGoogle Scholar
  70. Wheeler D, Suarez-Dominguez J (2006) Climatic reconstructions for the northeast Atlantic region ad 1685–1700: a new source of evidence from naval logbooks. Holocene 16:39–49CrossRefGoogle Scholar
  71. Wheeler D, Wilkinson C (2005) The determination of logbook wind force and weather terms: the English case. Clim Change 73:57–77CrossRefGoogle Scholar
  72. Wheeler D, García-Herrera R, Wilkinson CW, Ward C (2009) Air circulation and storminess in the Atlantic-European region derived from logbooks: 1658 to 1750. Clim Change (in review)Google Scholar
  73. Wilkinson C (2005) The non-climatic research potential of ships’ logbooks and journals. Clim Change 73:155–167CrossRefGoogle Scholar
  74. Wilks DS (2005) Statistical methods in the atmospheric sciences. Academic Press, San DiegoGoogle Scholar
  75. Woodruff SD, Slutz RJ, Jenne RL, Steurer PM (1987) A comprehensive ocean-atmosphere data set. Bull Am Meteorol Soc 68:1239–1250CrossRefGoogle Scholar
  76. Woodworth PL (2006) The meteorological data of William Hutchinson and a Liverpool air pressure time series spanning 1768–1999. Int J Climatol 26:1713–1726CrossRefGoogle Scholar
  77. Worley SJ, Woodruff SD, Reynolds RW, Lubker SJ, Lott N (2005) ICOADS release 2.1 data and products. Int J Climatol 25:823–842CrossRefGoogle Scholar
  78. Xoplaki E, Maheras P, Luterbacher J (2001) Variability of climate in meridional Balkans during the periods 1675–1715 and 1780–1830 and its impact on human life. Clim Change 48:581–615CrossRefGoogle Scholar
  79. Xoplaki E, González-Rouco FJ, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability, influence of large-scale dynamics. Clim Dyn 23:63–78CrossRefGoogle Scholar
  80. Xoplaki E, Luterbacher J, Paeth H, Dietrich D, Steiner N, Grosjean M, Wanner H (2005) European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys Res Lett 32:L15713. doi:10.1029/2005GL023424 CrossRefGoogle Scholar
  81. Xu JS (1993) The joint modes of the coupled atmosphere–ocean system observed from 1967 to 1987. J Clim 6:816–838CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • M. Küttel
    • 1
  • E. Xoplaki
    • 1
    • 2
  • D. Gallego
    • 3
  • J. Luterbacher
    • 1
    • 4
  • R. García-Herrera
    • 5
  • R. Allan
    • 6
  • M. Barriendos
    • 7
  • P. D. Jones
    • 8
  • D. Wheeler
    • 9
  • H. Wanner
    • 1
  1. 1.Oeschger Centre for Climate Change Research (OCCR), and Institute of Geography, Climatology and MeteorologyUniversity of BernBernSwitzerland
  2. 2.The Cyprus InstituteEEWRCNicosiaCyprus
  3. 3.Departamento de Sistemas Físicos, Químicos y NaturalesUniversidad Pablo de Olavide de SevillaSevillaSpain
  4. 4.Department of Geography, Climatology, Climate Dynamics and Climate ChangeJustus-Liebig University of GiessenGiessenGermany
  5. 5.Departamento de Física de la Tierra II, Facultad de CC FísicasUniversidad Complutense de MadridMadridSpain
  6. 6.Met Office Hadley CentreExeterUK
  7. 7.Department of Modern HistoryUniversity of BarcelonaBarcelonaSpain
  8. 8.Climatic Research Unit, School of Environmental SciencesUniversity of East AngliaNorwichUK
  9. 9.Faculty of Applied SciencesUniversity of SunderlandSunderlandUK

Personalised recommendations