Climate Dynamics

, Volume 34, Issue 6, pp 859–872 | Cite as

Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century

  • Imtiaz Rangwala
  • James R. Miller
  • Gary L. Russell
  • Ming Xu
Article

Abstract

We examine trends in climate variables and their interrelationships over the Tibetan Plateau using global climate model simulations to elucidate the mechanisms for the pattern of warming observed over the plateau during the latter half of the twentieth century and to investigate the warming trend during the twenty-first century under the SRES A1B scenario. Our analysis suggests a 4°C warming over the plateau between 1950 and 2100. The largest warming rates occur during winter and spring. For the 1961–2000 period, the simulated warming is similar to the observed trend over the plateau. Moreover, the largest warming occurs at the highest elevation sites between 1950 and 2100. We find that increases in (1) downward longwave radiation (DLR) influenced by increases in surface specific humidity (q), and (2) absorbed solar radiation (ASR) influenced by decreases in snow cover extent are, in part, the reason for a large warming trend over the plateau, particularly during winter and spring. Furthermore, elevation-based increases in DLR (influenced by q) and ASR (influenced by snow cover and atmospheric aerosols) appear to affect the elevation dependent warming trend simulated in the model.

Keywords

Climate change High elevation Tibetan Plateau Global climate model Specific humidity Downward longwave 

References

  1. Boucher O, Pham M (2002) History of sulfate aerosol radiative forcings. Geophys Res Lett 29:1308. doi:10.1029/2001GL014048 CrossRefGoogle Scholar
  2. Chen B, Chao WC, Liu X (2003) Enhanced climatic warming in the Tibetan Plateau due to doubling CO2: a model study. Clim Dyn 20:401–413Google Scholar
  3. Chen S, Liu Y, Thomas A (2006) Climatic change on the Tibetan Plateau: potential evapotranspiration trends from 1961–2000. Clim Change 76:291–319. doi:10.1007/s10584-006-9080-z CrossRefGoogle Scholar
  4. Cui X, Graf H, Langmann B, Chen W, Huang R (2006) Climate impacts of anthropogenic land use changes on the Tibetan Plateau. Glob Planet Change 54:33–56. doi:10.1016/j.gloplacha.2005.07.006 CrossRefGoogle Scholar
  5. Du M, Kawashima S, Yonemura S, Zhang X, Chen S (2004) Mutual influence between human activities and climate change in the Tibetan Plateau during recent years. Glob Planet Change 41:241–249. doi:10.1016/j.gloplacha.2004.01.010 CrossRefGoogle Scholar
  6. Duan A, Wu G (2006) Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys Res Lett 33:L22704. doi:10.1029/2006GL027946 CrossRefGoogle Scholar
  7. Giorgi F, Hurrell J, Marinucci M, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10:288–296. doi:10.1175/1520-0442(1997)010<0288:EDOTSC>2.0.CO;2 CrossRefGoogle Scholar
  8. Houghton J, Ding Y, Griggs D, Noguer M, van der Linden P, Dai X, Maskell K, Johnson C (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  9. Leathers D, Ellis A, Robinson D (1995) Characteristics of temperature depressions associated with snow cover across the northeast United States. J Appl Meteorol 34:381–390Google Scholar
  10. Levitus S, Burgett R, Boyer TP (1994) World ocean atlas 1994. Vol. 3. Salinity, NOAA Atlas NESDIS 3, p 99Google Scholar
  11. Li J, Yu R, Zhou T, Wang B (2005) Why is there an early spring cooling shift downstream of the Tibetan Plateau? J Clim 18:4660–4668. doi:10.1175/JCLI3568.1 CrossRefGoogle Scholar
  12. Liu X, Chen B (2000) Climatic warming in the Tibetan Plateau during recent decades. Int J Climatol 20:1729–1742. doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y CrossRefGoogle Scholar
  13. Liu B, Xu M, Henderson M, Qi Y, Li Y (2004) Taking China’s temperature: daily range, warming trends, and regional variations, 1955–2000. J Clim 17:4453–4462. doi:10.1175/3230.1 CrossRefGoogle Scholar
  14. New M, Hulme M, Jones P (1999) Representing twentieth-century space–time climate variability. Part I: Development of a 1961–90 mean monthly terrestrial climatology. J Clim 12:829–856Google Scholar
  15. Niu T, Chen L, Zhou Z (2004) The characteristics of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Adv Atmos Sci 21:193–203. doi:10.1007/BF02915705 CrossRefGoogle Scholar
  16. Pham M, Boucher O, Hauglustaine D (2005) Changes in atmospheric sulfur burdens and concentrations and resulting radiative forcings under IPCC SRES emission scenarios for 1990–2100. J Geophys Res 110:D06112. doi:10.029/2004JD005125 CrossRefGoogle Scholar
  17. Rangwala I, Miller J, Russell G, Xu M (2006) Analysis of global climate model experiments to elucidate past and future changes in surface insolation and warming in China. Geophys Res Lett 33:L20709. doi:10.1029/2006GL027778 CrossRefGoogle Scholar
  18. Rangwala I, Miller JR, Xu M (2009) Warming in the Tibetan Plateau: possible influences of the changes in surface water vapor. Geophys Res Lett 36:L06703. doi:10.1029/2009GL037245
  19. Ruckstuhl C, Philipona R, Morland J, Ohmura A (2007) Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J Geophys Res 112:L19809. doi:10.1029/2005GL023624 CrossRefGoogle Scholar
  20. Russell G, Miller J, Rind D (1995) A coupled atmosphere-ocean model for transient climate change studies. Atmos Ocean 33:683–730Google Scholar
  21. Ueno K, Tanaka K, Tsutsui H, Li M (2007) Snow cover conditions in the Tibetan Plateau observed during the winter of 2003/2004. Arct Antarct Alp Res 39:152–164. doi:10.1657/1523-0430(2007)39[152:SCCITT]2.0.CO;2 CrossRefGoogle Scholar
  22. Xu M, Chang C, Fu C, Qi Y, Robock A, Robinson D, Zhang H (2006) Steady decline of East Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res 111:D24111. doi:10.1029/2006JD007337 CrossRefGoogle Scholar
  23. Xu Z, Gong T, Li J (2007) Decadal trend of climate in the Tibetan Plateau-regional temperature and precipitation. Hydrological Processes. doi: 10.1002/hyp.6892. ISSN: 1099–1085
  24. You Q, Kang S, Wu Y, Yan Y (2007) Climate change over the Yarlung Zangbo river basin during 1961–2005. J Geogr Sci 17:409–420. doi:10.1007/s11442-007-0409-y CrossRefGoogle Scholar
  25. You Q, Kang S, Pepin N, Yan Y (2008) Relationship between trends in temperature extremes and elevation in the eastern and central Tibetan Plateau, 1961–2005. Geophys Res Lett 35:L04704. doi:10.1029/2007GL032669 CrossRefGoogle Scholar
  26. Zhang Y, Li T, Wang B (2004) Decadal change of the spring snow depth over the Tibetan Plateau: the associated circulation and influence on the East Asian summer monsoon. J Clim 17:2780–2793. doi:10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2 CrossRefGoogle Scholar
  27. Zhang Y, Liu C, Tang Y, Yang Y (2007) Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. J Geophys Res 112:D12110. doi:10.1029/2006JD008161 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Imtiaz Rangwala
    • 1
  • James R. Miller
    • 2
  • Gary L. Russell
    • 3
  • Ming Xu
    • 4
    • 5
  1. 1.Department of Environmental SciencesRutgers UniversityNew BrunswickUSA
  2. 2.Institute of Marine and Coastal SciencesRutgers UniversityNew BrunswickUSA
  3. 3.NASA Goddard Institute for Space StudiesNew YorkUSA
  4. 4.Institute of Geographic Sciences and Natural Resources ResearchChinese Academy of SciencesBeijingPeople’s Republic of China
  5. 5.Department of Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickUSA

Personalised recommendations