Climate Dynamics

, Volume 35, Issue 2–3, pp 315–329 | Cite as

Three centuries of Slovakian drought dynamics

  • U. BüntgenEmail author
  • R. Brázdil
  • D. Frank
  • J. Esper


Tree-ring data from Slovakia are used to reconstruct decadal-scale fluctuations of the self-calibrated Palmer Drought Severity Index (scPDSI) over 1744–2006. The ring width chronology correlates at 0.58 (annual) and 0.88 (decadal) with regional-scale (48–50°N and 18–20°E) summer (June–August) scPDSI variations (1901–2002). Driest and wettest years common to the tree-ring and target data are 1947, 1948, 1964, and 1916, 1927, 1938, 1941, respectively. The model indicates decadal-scale drought ~1780–1810, 1850–1870, 1940–1960, and during the late twentieth century. The wettest period occurred ~1745–1775. Instrumental measurements and documentary evidence allow the reconstructed drought extremes to be verified and also provide additional insights on associated synoptic drivers and socioeconomic impacts. Comparison of anomalous dry conditions with European-scale fields of 500 hPa geopotential height retains positive pressure anomalies centered over Central Europe leading to atmospheric stability, subsidence and dry conditions. Negative mid-tropospheric geopotential height anomalies over Western Europe are connected with anomalous wet conditions over Slovakia. Nine existing, annually resolved hydro-climatic reconstructions from Central Europe, which were herein considered for comparison with the Slovakian findings, reveal significant high- to low-frequency coherency among the majority of records. Differences between the Slovakian and the other reconstructions are most evident at the end of the nineteenth century.


Tree-ring width Documentary evidence Drought Synoptic pattern 



Coefficient of efficiency


Climatic Research Unit




Expressed Population Signal


Global circulation model


Goddard Institute for Space Studies



m asl

Meter above sea-level


Multi-Taper method


Palmer drought severity index


Pearson’s correlation coefficient


Inter-series correlation


Reduction of error


Self-calibrated Palmer drought severity index


Standard deviation


Tree-ring width



We are grateful to R. Glaser, W. Oberhuber, A. Pauling, C. Pfister, R. Wimmer, and R. Wilson for making their original reconstructions available. P. Faško provided average precipitation series and A. Kiss documentary data for Slovakia. A. Verstege measured tree-ring width, R. J. Kaczka supported fieldwork, J. Luterbacher and R. J. S. Wilson contributed via discussion. Supported by the SNF project NCCR-climate (Extract) and the EC project MILLENNIUM (#017008).


  1. Bartholy J, Pongrácz R (2007) Regional analysis of extreme temperature and precipitation indices for the Carpathian basin from 1946 to 2001. Glob Planet Change 57:83–95. doi: 10.1016/j.gloplacha.2006.11.002 CrossRefGoogle Scholar
  2. Bartholy J, Pongrácz R, Molnár Z (2004) Classification and analysis of past climate information based on historic documentary sources for the Carpathian Basin. Int J Climatol 24:1759–1776. doi: 10.1002/joc.1106 CrossRefGoogle Scholar
  3. Brázdil R, Kiss A (2001) Daily weather observations at Košice, Slovakia, in the period 1677–1681. Meteorol Cas 4:3–14Google Scholar
  4. Brázdil R, Štekl J (1986) Cirkulační procesy a atmosférické srážky v ČSSR (Circulation processes and atmospheric precipitation in the C.S.S.R.). Univerzita J. E. Purkyně, BrnoGoogle Scholar
  5. Brádka J, Dřevikovský A, Gregor Z, Kolesár J (1961) Počasí na území Čech a Moravy v typických povětrnostních situacích (Weather on the territory of Bohemia and Moravia in typical weather situations). Hydrometeorologický ústav, PrahaGoogle Scholar
  6. Brázdil R, Štěpánková P, Kyncl T, Kyncl J (2002) Fir tree-ring reconstruction of March–July precipitation in southern Moravia (Czech Republic), 1376–1996. Clim Res 20:223–239. doi: 10.3354/cr020223 CrossRefGoogle Scholar
  7. Brázdil R, Pfister C, Wanner H, von Storch H, Luterbacher J (2005) Historical climatology in Europe–state of the art. Clim Change 70:363–430. doi: 10.1007/s10584-005-5924-1 CrossRefGoogle Scholar
  8. Brázdil R, Kiss A, Luterbacher J, Valášek H (2008a) Weather patterns in eastern Slovakia 1717–1730, based on records from the Breslau meteorological network. Int J Climatol 28:1639–1651. doi: 10.1002/joc.1667 CrossRefGoogle Scholar
  9. Brázdil R, Trnka M, Dobrovolný P, Chromá K, Hlavinka P, Žalud Z (2008b) Variability of droughts in the Czech Republic, 1881–2006. Theor Appl Climatol. doi: 10.1007/s00704-008-0065-x
  10. Büntgen U, Frank DC, Kaczka RJ, Verstege A, Zwijacz-Kozica T, Esper J (2007) Growth/climate response of a multi-species tree-ring network in the Western Carpathian Tatra Mountains, Poland and Slovakia. Tree Physiol 27:689–702Google Scholar
  11. Büntgen U, Frank DC, Wilson R, Carrer M, Urbinati C, Esper J (2008) Testing for tree-ring divergence in the European Alps. Glob Change Biol 14:2443–2453. doi: 10.1111/j.1365-2486.2008.01640.x CrossRefGoogle Scholar
  12. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880. doi: 10.1002/joc.1216 CrossRefGoogle Scholar
  13. Cebulak E, Faško P, Lapin M, Šťastný P (2000) Extreme precipitation events in the Western Carpathians. In: Prace Geograficzne, vol 108, Instytut Geografii, UJ, pp 117–124Google Scholar
  14. Cook ER (1985) A time series analysis approach to tree-ring standardization. PhD Thesis, University of Arizona, p 171Google Scholar
  15. Cook ER, Peters K (1981) The smoothing spline: a new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull 41:45–53Google Scholar
  16. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402. doi: 10.1002/joc.3370140404 CrossRefGoogle Scholar
  17. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ‘segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237. doi: 10.1177/095968369500500211 CrossRefGoogle Scholar
  18. Dobrovolný P, Brázdil R, Valášek H, Kotyza O, Macková J, Halíčková M (2009) A standard paleoclimatological approach to temperature reconstruction in historical climatology: an example from the Czech Republic, A.D. 1718–2007. Int J Climatol (in press)Google Scholar
  19. Drinka R (2005) Synoptic causes of wet-spell occurrence in Slovakia during 1988–2002. Meteorol Cas 8:193–198Google Scholar
  20. Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression. Biometrika 38:159–178Google Scholar
  21. Esper J, Niederer R, Bebi P, Frank DC (2008) Climate signal age effects: evidence from young and old trees in the Swiss Engadin. For Ecol Manage 255:3783–3789CrossRefGoogle Scholar
  22. Faško P, Lapin M, Sekáčová Z, Šťastný P (2003) Extraordinary climatic anomaly in 2003. Meteorol Cas 6:3–7Google Scholar
  23. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007a) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Q Sci Rev 26:3298–3310. doi: 10.1016/j.quascirev.2007.08.002 CrossRefGoogle Scholar
  24. Frank D, Esper J, Cook E (2007b) Adjustment for proxy number and coherence in a large-scale temperature reconstruction. Geophys Res Lett 34. doi:  10.1029/2007GL030571
  25. Friedrichs D, Büntgen U, Esper J, Frank D, Neuwirth B, Löffler J (2009) Complex climate controls on 20th century oak growth in Central-West Germany. Tree Physiol 29:39–51. doi: 10.1093/treephys/tpn003 CrossRefGoogle Scholar
  26. Fritts HC (1976) Tree rings and climate. Academic Press, London, p 567Google Scholar
  27. Glaser R (2008) Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen. Wissenschaftliche Buchgesellschaft, Darmstadt, p 264Google Scholar
  28. Huntington TG (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol (Amst) 319:83–95. doi: 10.1016/j.jhydrol.2005.07.003 CrossRefGoogle Scholar
  29. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, CambridgeGoogle Scholar
  30. Klementová E, Litschmann T (2002) Detekcia výskytu sucha v Hurbanove (Detection of drought occurrence at Hurbanovo). In: Antal J. Očakávané globálne zmeny klímy a ich možný dopad na vodný režim, poľné a lesné hospodárstvo. Slovenská akadémia pôdohospodárských vied, Nitra, pp 45–50Google Scholar
  31. Klementová E, Litschmann T (2004) The agro-climatic drought in Slovakia in 2003. Meteorol Cas 7:11–16Google Scholar
  32. Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic Press, San DiegoGoogle Scholar
  33. Lapin M, Faško P (1996) Úhrny zrážok na Slovensku a zmeny atmosférickej cirkulácie v období 1874–1993 (precipitation totals in Slovakia and changes in atmospheric circulation in the 1874–1993 period). Meteorol Zpr 49:1–11Google Scholar
  34. Lapin M, Faško P (1998) Change of precipitation variability in Slovakia in the 1881–1997 period. In: Proceedings of the 25th international conference on Alpine meteorology, Torino, pp 126–131Google Scholar
  35. Lapin M, Pišútová Z (1998) Changes of cyclonicity, air pressure and precipitation totals in the 1901–1995 period. Meteorol Cas 1:15–22Google Scholar
  36. Litschmann T, Klementová E (2004) Using Palmer Drought Severity Index to assess drought in the territory of Slovakia. Meteorol Cas 7:67–72Google Scholar
  37. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561Google Scholar
  38. Mann ME, Lees JM (1996) Robust estimation of background noise and single detection in climatic time series. Clim Change 33:409–445. doi: 10.1007/BF00142586 CrossRefGoogle Scholar
  39. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  40. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SB (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563. doi: 10.1126/science.1082750 CrossRefGoogle Scholar
  41. Oberhuber W, Kofler W (2002) Dendroclimatological spring rainfall reconstruction for an inner Alpine dry valley. Theor Appl Climatol 71:97–106. doi: 10.1007/s704-002-8210-8 CrossRefGoogle Scholar
  42. Pauling A, Paeth H (2007) On the variability of return periods of European winter precipitation extremes over the last three centuries. Clim Past 3:65–76CrossRefGoogle Scholar
  43. Pauling A, Luterbacher J, Casty C, Wanner H (2006) 500 years of gridded high resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26:387–405. doi: 10.1007/s00382-005-0090-8 CrossRefGoogle Scholar
  44. Pfister C (1999) Wetternachhersage. 500 Jahre Klimavariationen und Naturkatastrophen 1496–1995. Haupt, Bern Stuttgart WienGoogle Scholar
  45. Rácz L (1999) Climate history of Hungary since 16th century: past, present and future. Centre for Regional Studies of Hungarian Academy of Sciences, Pécs, p 158Google Scholar
  46. Raible CC, Casty C, Luterbacher J, Pauling A, Esper J, Frank DC, Büntgen U, Roesch AC, Tschuck P, Wild M, Vidale PL, Schär C, Wanner H (2006) Climate variability: observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. Clim Change 79:9–29. doi: 10.1007/s10584-006-9061-2 CrossRefGoogle Scholar
  47. Réthly A (1970) Időjárási események és elemi csapások Magyarországon 1701–1800 (weather events and natural extremes in Hungary, 1701–1800). Akadémiai Kiadó, BudapestGoogle Scholar
  48. Réthly A, Simon A (1998–1999): Időjárási események és elemi csapások Magyarországon 1801–1900 (meteorological events and natural disasters in Hungary between 1801–1900), vol I–II. Országos Meteorológiai Szolgálat, BudapestGoogle Scholar
  49. Řezníčková L, Brázdil R, Tolasz R (2007) Meteorological singularities in the Czech Republic in the period 1961–2002. Theor Appl Climatol 88:179–192. doi: 10.1007/s00704-006-0253-5 CrossRefGoogle Scholar
  50. Šamaj F, Valovič Š (1982) Priestorové úhrny zrážok na Slovensku (1881–1980) (Areal precipitation totals over Slovakia, 1881–1980). Meteorol Zpr 35:108–112Google Scholar
  51. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi: 10.1038/nature02300 CrossRefGoogle Scholar
  52. Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for medieval hydroclimate. Q Sci Rev 26:2322–2336. doi: 10.1016/j.quascirev.2007.04.020 CrossRefGoogle Scholar
  53. Strömmer E (2003) Klima-Geschichte. Methoden der Rekonstruktion und historische Perspektive Ostösterreich 1700 bis 1830. Franz Deuticke, WienGoogle Scholar
  54. Team of authors (1967) Katalog povětrnostních situací pro území ČSSR (Catalogue of weather situations for the C.S.S.R. territory). Hydrometeorologický ústav, PrahaGoogle Scholar
  55. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 CrossRefGoogle Scholar
  56. van der Schrier G, Briffa KR, Jones PD, Osborn TJ (2006) Summer moisture variability across Europe. J Clim 19:2818–2834. doi: 10.1175/JCLI3734.1 CrossRefGoogle Scholar
  57. Warren SG, Eastman RM, Hahn CJ (2007) A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96. J Clim 20:717–738. doi: 10.1175/JCLI4031.1 CrossRefGoogle Scholar
  58. Wigley TML, Briffa KR, Jones PD (1984) On the average of value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–213. doi: 10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2 CrossRefGoogle Scholar
  59. Wilson RJS, Luckman BH, Esper J (2005) A 500 year dendroclimatic reconstruction of spring-summer precipitation from the lower Bavarian Forest region, Germany. Int J Climatol 25:611–630. doi: 10.1002/joc.1150 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  2. 2.Institute of GeographyMasaryk UniversityBrnoCzech Republic

Personalised recommendations