Advertisement

Climate Dynamics

, Volume 34, Issue 4, pp 573–585 | Cite as

A reconstructed dynamic Indian monsoon index extended back to 1880

  • Tianjun Zhou
  • Stefan Brönnimann
  • Thomas Griesser
  • Andreas M. Fischer
  • Liwei Zou
Article

Abstract

The authors present a reconstruction of summer (June–July–August) mean dynamic Indian monsoon index (DIMI) back to 1880 based on a large number of historical surface observation data as well as information from the upper air data. The reconstruction shows a satisfying skill in terms of both the value of reduction of error and an evaluation against other independent monsoon indices. The skill of reconstruction increases over time with more predictor data (in particular upper-level data) becoming available. A comparison with the observed all Indian summer monsoon rainfall index (AIRI) shows a high consistence in both inter-decadal and inter-annual variability. The reconstruction shows stronger than normal monsoon during the 1880s, 1915–1925 (around 1920) and 1930–1945 (around 1940) as the AIRI. The El Nino/Southern Oscillation (ENSO)—monsoon relationship is reasonably captured in the reconstruction. Powers concentrating within quasi-biennial band stand out in the reconstruction as well as in the AIRI. A comparison of the reconstruction against an atmospheric general circulation model simulation with specified SST and external forcing agents spanning 1901–1999 indicates a slightly higher reproducibility of monsoon circulation than monsoon rainfall in terms of interannual variability. The relationship between the Asian continent warming and the ENSO–monsoon connection is also discussed by using the new dynamic index.

Keywords

Dynamic Indian monsoon index Reconstruction Interdecadal and interannual variability 

Notes

Acknowledgments

This work was supported by the Sino-Swiss Cooperation Research Fellowship project entitled “Detecting Climate Change over Asian-Australian Monsoon domain during the last century by using reconstructed data and climate model”. T. Zhou acknowledges funding from the National Basic Research Program of China (2006CB403603), the National Natural Science Foundation of China under grant Nos. 40523001, 40625014 and 40821092. SB acknowledges funding from the Swiss National Science Foundation (“Past Climate Variability from an Upper-Level perspective”) and from an ETH research (TH) grant CASTRO. The comments and suggestions from two anonymous reviewers are highly appreciated.

References

  1. Allan RJ, Ansell TJ (2006) A new globally complete monthly historical mean sea level pressure data set (HadSLP2): 1850–2004. J Clim 19:5816–5842. doi: 10.1175/JCLI3937.1 CrossRefGoogle Scholar
  2. Brönnimann S (2003) A historical upper-air data set for the 1939–1944 period. Int J Climatol 23:769–791. doi: 10.1002/joc.914 CrossRefGoogle Scholar
  3. Brönnimann S, Luterbacher J (2004) Reconstructing Northern Hemisphere upper-level fields during World War II. Clim Dyn 22:499–510. doi: 10.1007/s00382-004-0391-3 CrossRefGoogle Scholar
  4. Brönnimann S, Luterbacher J, Staehelin J, Svendby TM, Hansen G, Svenøe T (2004) Extreme climate of the global troposphere and stratosphere in 1940–1942 related to El Niño. Nature 431:971–974. doi: 10.1038/nature02982 CrossRefGoogle Scholar
  5. Brönnimann S, Ewen T, Griesser T, Jenne R (2006) Multidecadal signal of solar variability in the upper troposphere during the twentieth century. Space Sci Rev 125:305–317. doi: 10.1007/s11214-006-9065-2 CrossRefGoogle Scholar
  6. Brönnimann S, Xoplaki E, Casty C, Pauling A, Luterbacher J (2007) ENSO influence on Europe during the last centuries. Clim Dyn 28:181–197. doi: 10.1007/s00382-006-0175-z CrossRefGoogle Scholar
  7. Buckley BM, Palakit K, Duangsathaporn K, Sanguantham P, Prasomsin P (2007) Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian ocean sectors. Clim Dyn 29:63–71. doi: 10.1007/s00382-007-0225-1 CrossRefGoogle Scholar
  8. Chang C-P, Harr P, Ju J (2001) Possible roles of Atlantic circulations on the weakening Indian monsoon rainfall–ENSO relationship. J Clim 14:2376–2380. doi: 10.1175/1520-0442(2001)014<2376:PROACO>2.0.CO;2 CrossRefGoogle Scholar
  9. Cherchi A, Navarra A (2003) Reproducibility and predictability of the Asian summer monsoon in the ECHAM4 GCM. Clim Dyn 20:365–379Google Scholar
  10. Cherchi A, Navarra A (2007) Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments. Clim Dyn 28:273–290. doi: 10.1007/s00382-006-0183-z CrossRefGoogle Scholar
  11. Cook ER, Briffa KR, Jones PD (1994) Spatial regression methods in dendroclimatology—a review and comparison of two techniques. Int J Climatol 14:379–401. doi: 10.1002/joc.3370140404 CrossRefGoogle Scholar
  12. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 CrossRefGoogle Scholar
  13. Egorova T, Rozanov E, Zubov VA, Karol IL (2003) Model for investigating ozone trends (MEZON). Atmos Ocean Phys 39:277–292Google Scholar
  14. Ewen T, Grant A, Brönnimann S (2008a) A monthly upper-air dataset for North America Back to 1922 from the monthly weather review. Mon Weather Rev 136:1792–1805. doi: 10.1175/2007MWR2202.1 CrossRefGoogle Scholar
  15. Ewen T, Brönnimann S, Annis JL (2008b) An extended Pacific North American index from upper air historical data back to 1922. J Clim 21:1295–1308. doi: 10.1175/2007JCLI1951.1 CrossRefGoogle Scholar
  16. Fischer AM, Schraner M, Rozanov E, Kenzelmann P, Schnadt Poberaj C, Brunner D, Lustenberger A, Luo BP, Bodeker GE, Egorova T, Schmutz W, Peter T, Brönnimann S (2008) Interannual-to-decadal variability of the stratosphere during the 20th century: ensemble simulations with a chemistry–climate model. Atmos Chem Phys 8:7755–7777Google Scholar
  17. Folland CK, Shukla J, Kinter J, Rodwell MJ (2002) C20C: the climate of the twentieth century project. CLIVAR exchanges, vol 7. No. 2 (June 2002) 37–39. http://www.clivar.org/publications/exchanges/ex24/ex24.pdf
  18. Fu CB, Diaz H, Dong DF, Fletcher J (1999) The changes of atmospheric circulation over Northern Hemispheric oceans associated with the global rapid warming of the 1920s. Int J Climatol 19:581–606. doi: 10.1002/(SICI)1097-0088(199905)19:6<581::AID-JOC396>3.0.CO;2-P CrossRefGoogle Scholar
  19. Gong D-Y, Luterbacher J (2008) Variability of the low-level cross-equatorial jet of the western Indian Ocean since 1660 as derived from coral proxies. Geophys Res Lett 35:L01705. doi: 10.1029/2007GL032409 CrossRefGoogle Scholar
  20. Goswami BN (2005) Interdecadal variability. In: Wang B (ed) The Asian monsoon, chap. 7. Springer, New York, pp 295–328Google Scholar
  21. Goswami BN, Krishnamurthy V, Annamalai H (1999) A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc 125B:611–633. doi: 10.1002/qj.49712555412 CrossRefGoogle Scholar
  22. Grant A, Brönnimann S, Ewen T, Nagurny A (2009) A new look at radiosonde data prior to 1958. J Clim. doi: 10.1175/2008JCLI2539.1
  23. Hansen J, Ruedy R, Glascoe J, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30997–31022. doi: 10.1029/1999JD900835 CrossRefGoogle Scholar
  24. Kang I-S, Jin K, Lau K-M, Shukla J et al (2002) Intercomparison of atmospheric GCM simulated anomalies associated with the 1997/1998 El Nino. J Clim 15:2791–2805. doi: 10.1175/1520-0442(2002)015<2791:IOAGSA>2.0.CO;2 CrossRefGoogle Scholar
  25. Kripalani RH, Kulkarni A (1997) Climatic impact of El Niño/La Niña on the Indian monsoon: a new perspective. Weather 52:39–46Google Scholar
  26. Kripalani R, Kulkarni A, Sabade S, Khandekar M (2003) Indian monsoon variability in a global warming scenario. Nat Hazards 29:189–206. doi: 10.1023/A:1023695326825 CrossRefGoogle Scholar
  27. Krishnamurti TN, Bhalme HN (1976) Oscillations of a monsoon system. Part I: observational aspects. J Atmos Sci 33:1937–1954. doi: 10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2 CrossRefGoogle Scholar
  28. Kucharski F, Scaife AA, Yoo JH, Folland CK, Kinter J, Knight J, Fereday D, Fischer AM, Jin EK, Kroger J, Lau N-C, Nakaegawa T, Nath MJ, Pegion P, Rozanov E, Schubert S, Sporyshev PV, Syktus J, Voldoire A, Yoon JH, Zeng N, Zhou T (2008) The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Clim Dyn. doi: 10.1007/s00382-008-0462-y
  29. Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159. doi: 10.1126/science.284.5423.2156 CrossRefGoogle Scholar
  30. Li T, Liu P, Fu X, Wang B, Meehl GA (2006) Spatio-temporal structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions. J Clim 19:3070–3087. doi: 10.1175/JCLI3736.1 CrossRefGoogle Scholar
  31. Manzini E, McFarlane NA (1998) The effect of varying the source spectrum of a gravity wave parameterization in the middle atmosphere general circulation model. J Geophys Res 103:31523–31539. doi: 10.1029/98JD02274 CrossRefGoogle Scholar
  32. Parthasarathy B, Kumar KR, Kothawale DR (1992) Indian summer monsoon rainfall indices: 1871–1990. Meteorol Mag 121:174–186Google Scholar
  33. Parthasarathy B, Munot AA, Kothawale DR (1995) All India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224. doi: 10.1007/BF00867461 CrossRefGoogle Scholar
  34. Rasmusson EM, Wang X-L, Ropelewski CF (1990) The biennial component of ENSO variability. J Mar Syst 1:71–96. doi: 10.1016/0924-7963(90)90153-2 CrossRefGoogle Scholar
  35. Scaife AA, Kucharski F, Folland CK, Kinter J, Brönnimann S, Fereday D, Fischer AM, Grainger S, Jin EK, Kang IS, Knight JR, Kusunoki S, Lau NC, Nath MJ, Nakaegawa T, Pegion P, Schubert S, Sporyshev P, Syktus J, Yoon JH, Zeng N, Zhou T (2008) The CLIVAR C20C Project: selected twentieth century climate events. Clim Dyn. doi: 10.1007/s00382-008-0451-1
  36. Schraner M, Rozanov E, Schnadt Poberaj C, Kenzelmann P, Fischer AM, Zubov V, Luo BP, Hoyle CR, Egorova T, Fueglistaler S, Brönnimann S, Schmutz W, Peter T (2008) Technical note: chemistry–climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes. Atmos Chem Phys Discuss 8:11103–11147CrossRefGoogle Scholar
  37. Sperber KR, Palmer TN (1996) Interannual tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J Clim 9:2727–2750CrossRefGoogle Scholar
  38. Sperber KR, Brankovic C, Deque M, Frederiksen CS, Graham R et al (2001) Dynamical seasonal predictability of the Asian summer monsoon. Mon Weather Rev 129:2226–2248. doi: 10.1175/1520-0493(2001)129<2226:DSPOTA>2.0.CO;2 CrossRefGoogle Scholar
  39. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein TA, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  40. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, a Bechtold V et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  41. Van Oldenborgh GJ, Burgers G (2005) Searching for decadal variations in ENSO precipitation teleconnections. Geophys Res Lett 32(L15701), doi: 10.1029/2005GL023110
  42. Wang B, Fan Z (1999) Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc 80:629–638. doi: 10.1175/1520-0477(1999)080<0629:COSASM>2.0.CO;2 CrossRefGoogle Scholar
  43. Wang S, Gong D (2000) Enhancement of the warming trend in China. Geophys Res Lett 27(16):2581–2584. doi: 10.1029/1999GL010825 CrossRefGoogle Scholar
  44. Wang B, Wu R, Lau KM (2001a) Interannual variability of the Asian summer monsoon: contrasts between the Indian and the western North Pacific–East Asian monsoons. J Clim 14:4073–4090. doi: 10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2 CrossRefGoogle Scholar
  45. Wang S, Gong D, Zhu J (2001b) Twentieth-century climate warming in China in the context of the Holocene. Holocene 11(3):313–321. doi: 10.1191/095968301673172698 CrossRefGoogle Scholar
  46. Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impact on Asian–Australian Monsoon variation. J Clim 16:1195–1211CrossRefGoogle Scholar
  47. Wang B, Kang IS, Lee JY (2004) Ensemble simulations of Asian-Australian monsoon variability by 11 AGCMs. J Clim 17:803–818. doi: 10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2 CrossRefGoogle Scholar
  48. Wang B, Ding Q, Fu X, Kang I, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett. doi: 10.1029/2005GL022734
  49. Wang B, Yang J, Zhou T, Wang B (2008) Interdecadal changes in the major modes of Asian–Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789. doi: 10.1175/2007JCLI1981.1 CrossRefGoogle Scholar
  50. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926. doi: 10.1002/qj.49711850705 CrossRefGoogle Scholar
  51. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103:14451–14510CrossRefGoogle Scholar
  52. Wu R, Kirtman BP (2005) Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Clim Dyn 25:155–170. doi: 10.1007/s00382-005-0003-x CrossRefGoogle Scholar
  53. Wu B, Zhou T (2008) Oceanic origin of the interannual and interdecadal variability of the summertime western Pacific subtropical high. Geophys Res Lett 35:L13701. doi: 10.1029/2008GL034584 CrossRefGoogle Scholar
  54. Yang B, Braeuning A, Yao T, Davis ME (2007) Correlation between the oxygen isotope record from Dasuopu ice core and the Asian Southwest monsoon during the last millennium. Quat Sci Rev 26:1810–1817. doi: 10.1016/j.quascirev.2007.03.003 CrossRefGoogle Scholar
  55. Zhou T, Li Z (2002) Simulation of the east Asian summer monsoon by using a variable resolution atmospheric GCM. Clim Dyn 19:167–180. doi: 10.1007/s00382-001-0214-8 CrossRefGoogle Scholar
  56. Zhou T, Yu R (2006) Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J Clim 19:5843–5858. doi: 10.1175/JCLI3952.1 CrossRefGoogle Scholar
  57. Zhou T, Wu B, Scaife AA, Bronnimann S, Cherchi A, Fereday D, Fischer AM, Folland CK, Jin KE, Kinter J, Knight JR, Kucharski F, Kusunoki S, Lau N-C, Li L, Nath MJ, Nakaegawa T, Navarra A, Pegion P, Rozanov E, Schubert S, Sporyshev P, Voldoire A, Wen X, Yoon JH, Zeng N (2008a) The CLIVAR C20C Project: which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Clim Dyn. doi: 10.1007/s00382-008-0501-8
  58. Zhou T, Yu R, Li H, Wang B (2008b) Ocean forcing to changes in global monsoon precipitation over the recent half century. J Clim 21:3833–3852. doi: 10.1175/2008JCLI2067.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Tianjun Zhou
    • 1
  • Stefan Brönnimann
    • 2
  • Thomas Griesser
    • 2
  • Andreas M. Fischer
    • 2
  • Liwei Zou
    • 1
    • 3
  1. 1.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Institute for Atmospheric and Climate ScienceETH ZurichZurichSwitzerland
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations