Climate Dynamics

, 33:1159 | Cite as

Spatio-temporal variability and predictability of summer monsoon onset over the Philippines

  • V. Moron
  • A. Lucero
  • F. Hilario
  • B. Lyon
  • A. W. Robertson
  • D. DeWitt


The spatio-temporal variability of boreal summer monsoon onset over the Philippines is studied through the analysis of daily rainfall data across a network of 76 gauges for the period 1977 to 2004 and the pentad Merged Analysis of Precipitation from the US Climate Prediction Center from 1979 to 2006. The onset date is defined using a local agronomic definition, namely the first wet day of a 5-day period receiving at least 40 mm without any 15-day dry spell receiving <5 mm in the 30 days following the start of that period. The onset is found to occur rather abruptly across the western Philippines around mid-May on average and is associated with the set-up of a “classical” monsoonal circulation with low-level easterlies subsequently veering to southerly, and then southwesterly. The onset manifests itself merely as a seasonal increase of rainfall over the eastern Philippines, where rainfall occurs throughout most of the year. Interannual variability of the onset date is shown to consist of a spatially coherent large-scale component, rather similar over the western and eastern Philippines, with a moderate to high amount of local-scale (i.e. station scale) noise. In consequence, the large-scale signal can be easily retrieved from any sample of at least 5–6 stations across the network although the local-scale coherence and fingerprint of the large-scale signal of the onset date are found to be stronger over the central Philippines, roughly from Southern Luzon to Northern Mindanao. The seasonal predictability of local onset is analyzed through a cross-validated canonical correlation analysis using tropical Pacific and Indian Ocean sea surface temperature in March and the 850 hPa May wind field from dynamical forecast models as predictors. The regional-scale onset, defined as the average of standardized local-scale anomalies in onset date, shows good predictive skill (r ≈ 0.8). Moreover, most of the stations show weak to moderate skill (median skill = 0.28–0.43 depending on the scheme) with spatial averaging across stations typically increasing skill to >0.6.



This research was supported by grants from the National Oceanic and Atmospheric Administration (NOAA), NA050AR4311004, the US Agency for International Development’s Office of Foreign Disaster Assistance, DFD-A-00-03-00005-00, and the US Department of Energy’s Climate Change Prediction Program, DE-FG02-02ER63413.The computing for this project was partially provided by a grant from the NCAR CSL program to the IRI. The NCEP CFS model runs were obtained from the U.S. Climate Prediction Center via the IRI Data Library. We wish to acknowledge the valuable contributions of Ms. Remedios Liwanag who help compile and quality control the daily rainfall data used in this research study. We also thank the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) for providing the daily rainfall records, and many thanks to the staff of the Climate Data Section of the Climatology and Agrometeorology Branch of PAGASA for their helpful efforts during the station selection. Lastly, we thank Simon Mason (IRI) for his help with CPT and Leo Ostwald (IRI) for his help in obtaining GCM runs.


  1. Akasaka I, Morishima W, Mikami T (2007) Seasonal march and its spatial difference of rainfall in the Philippines. Int J Climatol 27:715–725. doi:10.1002/joc.1428 CrossRefGoogle Scholar
  2. Chang CP, Chen GTJ (1995) Tropical circulations associated with southwest monsoon onset and westerly surges over the South China Sea. Mon Weather Rev 123:3254–3267. doi:10.1175/1520-0493(1995)123<3254:TCAWSM>2.0.CO;2CrossRefGoogle Scholar
  3. Chou C, Tu JY, Yu JH (2003) Interannual variability of the western North Pacific summer monsoon: differences between ENSO and Non-ENSO years. J Clim 16:2275–2287. doi:10.1175/2761.1 CrossRefGoogle Scholar
  4. Coronas J (1920) The climate and weather of the Philippines, 1903 to 1918. Bureau of printing, Manila, p 195Google Scholar
  5. DeWitt DG (2005) Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere-ocean general circulation model. Mon Weather Rev 133:2972–2995. doi:10.1175/MWR3016.1 CrossRefGoogle Scholar
  6. Diday E, Simon JC (1976) Clustering analysis. In: Fu KS (ed) Digital pattern recognition. Communication and cybernetics, vol 10. Springer, Heidelberg, pp 47–94Google Scholar
  7. Ding Y (2004) Seasonal march of the East-Asian summer monsoon. In: Chang C-P (ed) East Asian monsoon. World Scientific, Singapore, pp 3–53Google Scholar
  8. Flores JF, Balagot VF (1969) Climate of the Philippines in world survey of climatology, vol 8. Elsevier, Amsterdam, pp 159–213Google Scholar
  9. Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152. doi:10.1002/joc.636 CrossRefGoogle Scholar
  10. Jose AM, Cruz NA (1999) Climate change impacts and responses in the Philippines: water resources. Clim Res 12:77–84. doi:10.3354/cr012077 CrossRefGoogle Scholar
  11. Katz RW, Glantz MH (1986) Anatomy of a rainfall index. Mon Weather Rev 114:764–771. doi:10.1175/1520-0493(1986)114<0764:AOARI>2.0.CO;2CrossRefGoogle Scholar
  12. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP-NCAR 40-year reanalysis project. Bull Am Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2CrossRefGoogle Scholar
  13. Kiladis GN, Diaz HF (1989) Global climatic anomalies associated with extremes in the Southern Oscillation. J Clim 2:1069–1090. doi:10.1175/1520-0442(1989)002<1069:GCAAWE>2.0.CO;2CrossRefGoogle Scholar
  14. Kintanar RL (1984) Climate of the Philippines, PAGASA report, 38 ppGoogle Scholar
  15. Lau KM, Yang S (1997) Climatology and interannual variability of the osutheast Asian summer monsoon. Adv Atmos Sci 14:141–162. doi:10.1007/s00376-997-0016-y CrossRefGoogle Scholar
  16. Li S, Goddard L, DeWitt DG (2008) Predictive skill of AGCM seasonal climate forecasts subject to different SST prediction methodologies. J Clim 21:2169–2186. doi:10.1175/2007JCLI1660.1 CrossRefGoogle Scholar
  17. Liu YM, Wu GX, Liu H, Liu P (2001) Condensation heating over the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere. Clim Dyn 17:327–338. doi:10.1007/s003820000117 CrossRefGoogle Scholar
  18. Liu YM, Chan JCL, Mao JY, Wu GX (2002) The role of Bay of Bengal convection in the onset of the 1998 South China Sea summer monsoon. Mon Weather Rev 130:2731–2744. doi:10.1175/1520-0493(2002)130<2731:TROBOB>2.0.CO;2CrossRefGoogle Scholar
  19. Lyon B, Cristi H, Verceles ER, Hilario FD, Abastillas R (2006) Seasonal reversal of the ENSO rainfall signal in the Philippines. Geophys Res Lett 33:L24710. doi:10.1029/2006GL028182 CrossRefGoogle Scholar
  20. Lyon B, Camargo S (2009) The seasonally varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Clim Dyn 32:125–141. doi:10.1007/s00382-008-0380-z CrossRefGoogle Scholar
  21. Mao J, Chan JCL, Wu G (2004) Relationship between the onset of the south China sea summer monsoon and the structure of the Asian subtropical anticyclone. J Meteorol Soc Jpn 82:845–859. doi:10.2151/jmsj.2004.845 CrossRefGoogle Scholar
  22. Marteau R, Moron V, Philippon N (2009) Spatial coherence of boreal monsoon onset across Sahel. J Clim. doi:10.1175/2008JCLI2383.1
  23. Moron V, Robertson AW, Ward MN (2006) Seasonal predictability and spatial coherence of rainfall characteristics in the tropical setting of Senegal. Mon Weather Rev 134:3248–3262. doi:10.1175/MWR3252.1 CrossRefGoogle Scholar
  24. Moron V, Lucero A, Hilario F, DeWitt D, Lyon B, Robertson AW (2007a) Seasonal predictability of monsoon onset over the Philippines, CLIVAR exchanges, vol 35. pp 14–19Google Scholar
  25. Moron V, Robertson AW, Ward MN, Camberlin P (2007b) Spatial coherence of tropical rainfall at the regional scale. J Clim 20:5244–5263. doi:10.1175/2007JCLI1623.1 CrossRefGoogle Scholar
  26. Moron V, Robertson AW, Boer R (2009) Spatial coherence and seasonal predictability of monsoon onset over Indonesia. J Clim. doi:10.1175/2008JCLI2435.1
  27. Murakami T, Matsumoto J (1994) Summer monsoon over the Asian continent and western North Pacific. J Meteorol Soc Jpn 72:719–745Google Scholar
  28. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño southern Oscillation. Mon Weather Rev 115:1606–1626. doi:10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2CrossRefGoogle Scholar
  29. Ropelewski CF, Halpert MS (1996) Quantifying Southern Oscillation—precipitation relationships. J Clim 9:1043–1059. doi:10.1175/1520-0442(1996)009<1043:QSOPR>2.0.CO;2CrossRefGoogle Scholar
  30. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan HL, Moorthi S, Behringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19:3483–3517. doi:10.1175/JCLI3812.1 CrossRefGoogle Scholar
  31. Sivakumar MVK (1988) Predicting rainy season potential from the onset of rains in southern Sahelian and Sudanian climatic zones of West-Africa. Agric For Meteorol 42:295–305. doi:10.1016/0168-1923(88)90039-1 CrossRefGoogle Scholar
  32. van den Dool HM (1994) Searching for analogues, how long must we wait? Tellus 46A:314–324Google Scholar
  33. Wang B (1994) Climatic regimes of tropical convection and rainfall. J Clim 7:1109–1118. doi:10.1175/1520-0442(1994)007<1109:CROTCA>2.0.CO;2CrossRefGoogle Scholar
  34. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536. doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2CrossRefGoogle Scholar
  35. Wang B, LinHo (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386–398. doi:10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2CrossRefGoogle Scholar
  36. Wang B, Zhang Q (2002) Pacific-East Asian teleconnection. Part II: How the Philippine Sea anomalous anticyclone is established during El Niño development. J Clim 15:3252–3265. doi:10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2CrossRefGoogle Scholar
  37. Webster PJ, Magana VO, Palmer TN, Tomas TA, Yanai M, Yasunari T (1998) Monsoons : processes, predictability and prospects for prediction. J Geophys Res 103:14451–14510. doi:10.1029/97JC02719 CrossRefGoogle Scholar
  38. Wilks DS (1999) Interannual variability and extreme-value characteristics of several stochastic daily precipitation models. Agric For Meteorol 93:153–169. doi:10.1016/S0168-1923(98)00125-7 CrossRefGoogle Scholar
  39. Wu GX, Zhang YS (1998) Tibetan plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea. Mon Weather Rev 126:913–927. doi:10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2CrossRefGoogle Scholar
  40. Wu GX, Liu YM, Wang TM, Wan R, Liu X, Li W, Wang Z, Zhang Q, Duan A, Liang X (2007) The influence of the mechanical and thermal forcing of the Tibetan plateau on the Asian climate. J Hydrometeorol 8:770–789. doi:10.1175/JHM609.1 CrossRefGoogle Scholar
  41. Wu R, Wang B (2000) Interannual variability of summer monsoon onset over the Western North Pacific and the underlying processes. J Clim 13:2483–2501. doi:10.1175/1520-0442(2000)013<2483:IVOSMO>2.0.CO;2CrossRefGoogle Scholar
  42. Wu R, Wang B (2001) Multi-stage onset of the summer monsoon over the western North Pacific. Clim Dyn 17:277–289. doi:10.1007/s003820000118 CrossRefGoogle Scholar
  43. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2CrossRefGoogle Scholar
  44. Xie P, Arkin PA (1998) Global monthly precipitations estimates from satellite-observed outgoing longwave radiation. J Clim 11:137–164. doi:10.1175/1520-0442(1998)011<0137:GMPEFS>2.0.CO;2CrossRefGoogle Scholar
  45. Yasunari T (1991) The monsoon year—a new concept of the climatic year in the tropics. Bull Am Meteorol Soc 72:1331–1338. doi:10.1175/1520-0477(1991)072<1331:TMYNCO>2.0.CO;2CrossRefGoogle Scholar
  46. Zhang Z, Chan CL, Ding Y (2004) Characteristics, evolution and mechanisms of the summer monsoon onset over southeast Asia. Int J Climatol 24:1461–1482. doi:10.1002/joc.1082 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • V. Moron
    • 1
    • 2
    • 3
    • 4
  • A. Lucero
    • 5
  • F. Hilario
    • 5
  • B. Lyon
    • 4
  • A. W. Robertson
    • 4
  • D. DeWitt
    • 4
  1. 1.UFR des Sciences Géographiques et de l’AménagementUniversité d’Aix-Marseille IAix en ProvenceFrance
  2. 2.CEREGE, UMR 6635 CNRSAix en ProvenceFrance
  3. 3.Institut Universitaire de FranceParisFrance
  4. 4.International Research Institute for Climate and SocietyColumbia UniversityNew YorkUSA
  5. 5.Philippine Atmospheric Geophysical and Astronomical Services AdministrationManilaPhilippines

Personalised recommendations