Climate Dynamics

, Volume 33, Issue 7–8, pp 1075–1088 | Cite as

Eemian tropical and subtropical African moisture transport: an isotope modelling study

  • Marcus HeroldEmail author
  • Gerrit Lohmann


During the last interglacial insolation maximum (Eemian, MIS 5e) the tropical and subtropical African hydrological cycle was enhanced during boreal summer months. The climate anomalies are examined with a General Circulation Model (ECHAM4) that is equipped with a module for the direct simulation of 18O and deuterium (H 2 18 O and HDO, respectively) in all components of the hydrological cycle. A mechanism is proposed to explain the physical processes that lead to the modelled anomalies. Differential surface heating due to anomalies in orbital insolation forcing induce a zonal flow which results in enhanced moisture advection and precipitation. Increased cloud cover reduces incoming short wave radiation and induces a cooling between 10°N and 20°N. The isotopic composition of rainfall at these latitudes is therefore significantly altered. Increased amount of precipitation and stronger advection of moisture from the Atlantic result in isotopically more depleted rainfall in the Eemian East African subtropics compared to pre-industrial climate. The East–West gradient of the isotopic rainfall composition reverses in the Eemian simulation towards depleted values in the east, compared to more depleted western African rainfall in the pre-industrial simulation. The modelled re-distribution of δ18O and δD is the result of a change in the forcing of the zonal flow anomaly. We conclude that the orbitally induced forcing for African monsoon maxima extends further eastward over the continent and leaves a distinct isotopic signal that can be tested against proxy archives, such as lake sediment cores from the Ethiopian region.


Zonal Flow Boreal Summer African Continent Rain Belt Evaporative Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded through DFG-Research Center/Excellence Cluster “The Ocean in the Earth System”. We thank Jürgen Pätzold and Thomas Felis for the stimulating discussions and for the insight in the work of retrieving proxy data. We are grateful to Martin Werner and Martin Losch for comments and discussions during the development of the manuscript.


  1. Andersen K, Azuma N, Barnola J, Bigler M, Biscaye P, Caillon N, Chappellaz J, Clausen H, DahlJensen D, Fischer H, Fluckiger J, Fritzsche D, Fujii Y, Goto-Azuma K, Gronvold K, Gundestrup N, Hansson M, Huber C, Hvidberg C, Johnsen S, Jonsell U, Jouzel J, Kipfstuhl S, Landais A, Leuenberger M, Lorrain R, Masson-Delmotte V, Miller H, Motoyama H, Narita H, Popp T, Rasmussen S, Raynaud D, Rothlisberger R, Ruth U, Samyn D, Schwander J, Shoji H, Siggard-Andersen M, Steffensen J, Stocker T, Sveinbjornsdottir A, Svensson A, Takata M, Tison J, Thorsteinsson T, Watanabe O, Wilhelms F, White J, and N Greenland Ice Core Project (2004) High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431(7005):147–151Google Scholar
  2. Augustin L, Barbante C, Barnes P, Barnola J, Bigler M, Castellano E, Cattani O, Chappellaz J, DahlJensen D, Delmonte B, Dreyfus G, Durand G, Falourd S, Fischer H, Fluckiger J, Hansson M, Huybrechts P, Jugie R, Johnsen S, Jouzel J, Kaufmann P, Kipfstuhl J, Lambert F, Lipenkov V, Littot G, Longinelli A, Lorrain R, Maggi V, Masson-Delmotte V, Miller H, Mulvaney R, Oerlemans J, Oerter H, Orombelli G, Parrenin F, Peel D, Petit J, Raynaud D, Ritz C, Ruth U, Schwander J, Siegenthaler U, Souchez R, Stauffer B, Steffensen J, Stenni B, Stocker T, Tabacco I, Udisti R, vande R Wal, vanden Broeke M, Weiss J, Wilhelms F, Winther J, Wolff E, Zucchelli M, and EPICA Community Members (2004) Eight glacial cycles from an Antarctic ice core. Nature 429(6992):623–628Google Scholar
  3. Berger AL (1978) Long-term variations of daily insolation and quaternary climatic changes. J Atmos Res 35:2361–2367Google Scholar
  4. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterschmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Lan A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—Part 1: experiments and large-scale features. Clim Past 3(2):261–277Google Scholar
  5. Burman J, Passe T (2008) Oceanography in northwestern Europe during the last interglacial from intrashell delta O-18 ranges in Littorina littorea gastropods. Quat Res 70(1):121–128CrossRefGoogle Scholar
  6. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  7. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 4:436–468CrossRefGoogle Scholar
  8. Doherty R, Kutzbach J, Foley J, Pollard D (2000) Fully coupled climate/dynamical vegetation model simulations over Northern Africa during the mid-Holocene. Clim Dyn 16(8):561–573CrossRefGoogle Scholar
  9. Felis T, Lohmann G, Kuhnert H, Lorenz S, Scholz D, Pätzold J, Al-Rousan S, Al-Moghrabi S (2004) Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429:164–168CrossRefGoogle Scholar
  10. Fleitmann D, Burns SJ, Neff U, Mangini A, Matter A (2003) Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quat Res 60:223–232CrossRefGoogle Scholar
  11. Fleitmann D, Burns S, Mangini A, Mudelsee M, Kramers J, Villa I, Neff U, Al-Subbary A, Buettner A, Hippler D, Matter A (2007) Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev 26:170–188CrossRefGoogle Scholar
  12. Hoffmann G, Werner M, Heimann M (1998) Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J Geophys Res 103(D14):16,871–16,896CrossRefGoogle Scholar
  13. Holton JR (1992) An introduction to dynamical meteorology. Academic Press, DublinGoogle Scholar
  14. Jansen E, Overpeck J, Briffa KR, Duplessy J-C, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier WR, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Paleoclimatology. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 433–497Google Scholar
  15. Jouzel J, Lorius C, Petit JR, Genthon C, Barkov NI, Kotlyakov VM, Petrov VM (1987) Vostok ice core—a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329:403–408CrossRefGoogle Scholar
  16. Jouzel J, Hoffmann G, Koster RD, Masson V (2000) Water isotopes in precipitation: data/model comparison for present-day and past climates. Quat Sci Rev 19(1–5):363–379CrossRefGoogle Scholar
  17. Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443CrossRefGoogle Scholar
  18. Kutzbach J, Bonan G, Foley J, Harrison SP (1996) Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene. Nature 384:623–626CrossRefGoogle Scholar
  19. Legutke S, Voss R (1999) The Hamburg ocean-atmosphere coupled general circulation model ECHO-G. Technical report, Deutsches Klimarechenzentrum, HamburgGoogle Scholar
  20. Lhomme N, Clarke GKC, Marshall SJ (2005) Tracer transport in the Greenland Ice Sheet: constraints on ice cores and glacial history. Quat Sci Rev 24(1–2):173–194CrossRefGoogle Scholar
  21. Lohmann G, Lorenz SJ (2007) Orbital forcing on atmospheric dynamics during the last interglacial and glacial inception. In: Sirocko F, Litt T, Claussen M, Sanchez-Goni MF (eds) The climate of past interglacials, Elsevier, Amsterdam, pp 527–545Google Scholar
  22. Lorenz SJ, Lohmann G (2004) Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model: method and application for the holocene. Clim Dyn 23:727–743CrossRefGoogle Scholar
  23. Merlivat L, Jouzel J (1979) Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J Geophys Res 84(NC8):5029–5033CrossRefGoogle Scholar
  24. Montoya M, von Storch H, Crowley TJ (2000) Climate simulation for 125 kyr BP with a coupled ocean-atmosphere general circulation model. J Clim 13(6):1057–1072CrossRefGoogle Scholar
  25. Otto-Bliesner BL, Marsha SJ, Overpeck JT, Miller GH, Hu AX (2006) Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311(5768):1751–1753CrossRefGoogle Scholar
  26. Reichart G, denDulk M, Visser H, van der Weijden C, Zachariasse W (1997) A 225 kyr record of dust supply, paleoproductivity and the oxygen minimum zone from the Murray ridge (northern Arabian sea). Palaeogeogr Palaeoclimatol Palaeoecol 134(1–4):149–169Google Scholar
  27. Rohling EJ, Cane TR, Cooke S, Sprovieri M, Bouloubassi I, Emeis KC, Schiebel R, Kroon D, Jorissen FJ, Lorre A, Kemp AES (2002) African monsoon variability during the previous interglacial maximum. Earth Planet Sci Lett 202:61–75CrossRefGoogle Scholar
  28. Rohling EJ, Sprovieri M, Cane T, Casford JSL, Cooke S, Bouloubassi I, Emeis KC, Schiebel R, Rogerson M, Hayes A, Jorissen FJ, Kroon D (2004) Reconstructing past planktic foraminiferal habitats using stable isotope data: a case history for Mediterranean sapropel S5. Mar Micropaleontol 50(1–2):89–123CrossRefGoogle Scholar
  29. Rossignol-Strick M (1983) African monsoons, an immediate climate response to orbital insolation. Nature 304:46–49CrossRefGoogle Scholar
  30. Rozanski K, Araguas-Araguas L, Konfiantini R (1993) Isotopic patterns in modern global precipitation. Geophys Monogr 78:1–36Google Scholar
  31. Schefuß E, Schouten S, Schneider RR (2005) Climatic controls on central African hydrology during the past 20,000 years. Nature 437:1003–1006CrossRefGoogle Scholar
  32. Schmidt GA, LeGrande AN, Hoffmann G (2007) Water isotope expressions of intrinsic and forced variability in a coupled ocean–atmosphere model. J Geophys Res 112:D10103CrossRefGoogle Scholar
  33. Schurgers G, Mikolajewicz M, Groeger U, Maier-Reimer E, Vizcaino M, Winguth A (2007) The effect of land surface changes on Eemian climate. Clim Dyn 29:357–373CrossRefGoogle Scholar
  34. Suwa M, von Fischer J, Bender M, Landais A, Brook E (2006) Chronology reconstruction for the disturbed bottom section of the GISP2 and the GRIP ice cores: implications for Termination II in Greenland. J Geophys Res 111:D02101CrossRefGoogle Scholar
  35. Tzedakis PC (2007) Seven ambiguities in the Mediterranean palaeoenvironmental narrative. Quat Sci Rev 26(17–18):2042–2066CrossRefGoogle Scholar
  36. vander Meer MTJ, Baas M, Rijpstra WIC, Marino G, Rohling EJ, Damste JSS, Schouten S (2007) Hydrogen isotopic compositions of long-chain alkenones record freshwater flooding of the Eastern Mediterranean at the onset of sapropel deposition. Earth Planet Sci Lett 262(3–4):594–600CrossRefGoogle Scholar
  37. Wang Y, Cheng H, Edwards RL, Kong X, Shao X, Chen S, Wu J, Jiang X, Wang X, An Z (2008) Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 451(7182):1090–1093Google Scholar
  38. Werner M, Heimann M, Hoffmann G (2001) Isotopic composition and origin of polar precipitation in present and glacial climate simulations. Tellus 53B:53–71CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  2. 2.MARUM, Center for Marine Environmental SciencesBremenGermany

Personalised recommendations