Climate Dynamics

, 33:1051 | Cite as

The CLIVAR C20C project: which components of the Asian–Australian monsoon circulation variations are forced and reproducible?

  • Tianjun Zhou
  • Bo Wu
  • A. A. Scaife
  • S. Brönnimann
  • A. Cherchi
  • D. Fereday
  • A. M. Fischer
  • C. K. Folland
  • K. E. Jin
  • J. Kinter
  • J. R. Knight
  • F. Kucharski
  • S. Kusunoki
  • N.-C. Lau
  • Lijuan Li
  • M. J. Nath
  • T. Nakaegawa
  • A. Navarra
  • P. Pegion
  • E. Rozanov
  • S. Schubert
  • P. Sporyshev
  • A. Voldoire
  • Xinyu Wen
  • J. H. Yoon
  • N. Zeng
Article

Abstract

A multi-model set of atmospheric simulations forced by historical sea surface temperature (SST) or SSTs plus Greenhouse gases and aerosol forcing agents for the period of 1950–1999 is studied to identify and understand which components of the Asian–Australian monsoon (A–AM) variability are forced and reproducible. The analysis focuses on the summertime monsoon circulations, comparing model results against the observations. The priority of different components of the A–AM circulations in terms of reproducibility is evaluated. Among the subsystems of the wide A–AM, the South Asian monsoon and the Australian monsoon circulations are better reproduced than the others, indicating they are forced and well modeled. The primary driving mechanism comes from the tropical Pacific. The western North Pacific monsoon circulation is also forced and well modeled except with a slightly lower reproducibility due to its delayed response to the eastern tropical Pacific forcing. The simultaneous driving comes from the western Pacific surrounding the maritime continent region. The Indian monsoon circulation has a moderate reproducibility, partly due to its weakened connection to June–July–August SSTs in the equatorial eastern Pacific in recent decades. Among the A–AM subsystems, the East Asian summer monsoon has the lowest reproducibility and is poorly modeled. This is mainly due to the failure of specifying historical SST in capturing the zonal land-sea thermal contrast change across the East Asia. The prescribed tropical Indian Ocean SST changes partly reproduce the meridional wind change over East Asia in several models. For all the A–AM subsystem circulation indices, generally the MME is always the best except for the Indian monsoon and East Asian monsoon circulation indices.

Keywords

CLIVAR C20C Asian–Australian monsoon circulation AGCM Reproducibility 

References

  1. Chang CP, Li T (2000) A theory of the tropical tropospheric biennial oscillation. J Atmos Sci 57:2209–2224. doi:10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2CrossRefGoogle Scholar
  2. Chang CP, Zhang Y, Li T (2000a) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: role of the subtropical ridge. J Clim 13:4310–4325. doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2CrossRefGoogle Scholar
  3. Chang CP, Zhang Y, Li T (2000b) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. J Clim 13:4310–4325. doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2CrossRefGoogle Scholar
  4. Chang CP, Harr P, Ju J (2001) Possible roles of atlantic circulations on the weakening Indian monsoon rainfall–ENSO relationship. J Clim 14:2376–2380. doi:10.1175/1520-0442(2001)014<2376:PROACO>2.0.CO;2CrossRefGoogle Scholar
  5. Cherchi A, Navarra A (2003) Reproducibility and predictability of the Asian summer monsoon in the Echam4 GCM. Clim Dyn 20:365–379Google Scholar
  6. Cherchi A, Navarra A (2007) Sensitivity of the Asian summer monsoon to the horizontal resolution: differences between AMIP-type and coupled model experiments. Clim Dyn 28:273–290. doi:10.1007/s00382-006-0183-z CrossRefGoogle Scholar
  7. Cherchi A, Gualdi S, Behera S, Luo JJ, Masson S, Yamagata T, Navarra A (2007) The influence of tropical Indian Ocean SST on the Indian summer monsoon. J Clim 20:3083–3105. doi:10.1175/JCLI4161.1 CrossRefGoogle Scholar
  8. Collins WD et al (2003) Description of the NCAR Community Atmosphere Model (CAM2). National Center for Atmospheric Research, Boulder Google Scholar
  9. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: Linkages between the tropics and the north Pacific during boreal winter since 1900. J Clim 17:3109–3124. doi:10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2CrossRefGoogle Scholar
  10. Fennessy MJ, Kinter JL, Kirtman B, Marx L, Nigam S, Schneider E, Shukla J, Straus D, Vernekar A, Xue Y, Zhou J (1994) The simulated Indian monsoon: a GCM senstivity study. J Clim 7:33–43. doi:10.1175/1520-0442(1994)007<0033:TSIMAG>2.0.CO;2CrossRefGoogle Scholar
  11. Folland CK, Shukla J, Kinter J, Rodwell MJ (2002) C20C: the climate of the twentieth century project. CLIVAR exchanges, vol 7, No 2 (June 2002) 37–39. http://www.clivar.org/publications/exchanges/ex24/ex24.pdf
  12. Gadgil S, Sajani S (1998) Monsoon precipitation in the AMIP runs. Clim Dyn 14:659–689. doi:10.1007/s003820050248 CrossRefGoogle Scholar
  13. Gong DY, Ho CH (2002) Shift in the summer rainfall over the Yangtze River valley in the late 1970s. Geophys Res Lett 29:1436. doi:10.1029/2001GL014523 CrossRefGoogle Scholar
  14. Guo QY (1983) The summer monsoon intensity index in East Asia and its variation. Acta Geogr Sin 38:207–217 in ChineseGoogle Scholar
  15. Hu ZZ (1997) Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. J Geophys Res 102:19403–19412. doi:10.1029/97JD01052 CrossRefGoogle Scholar
  16. Hu ZZ, Yang S, Wu R (2003) Long-term climate variations in China and global warming signals. J Geophys Res. doi:10.1029/2003JD003651
  17. Ju J, Slingo J (1995) The Asian summer monsoon and ENSO. Q J R Meteorol Soc 121:1133–1168. doi:10.1002/qj.49712152509 CrossRefGoogle Scholar
  18. Kalnay E et al (1996) The NCEP/NCAR 40-year Reanalysis Project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2Google Scholar
  19. Kang IS, Shukla J (2006) Dynamic seasonal prediction and predictability of the monsoon. In: Wang B (ed) The Asian Monsoon. Springer/Praxis Publishing, New York, pp 585–612CrossRefGoogle Scholar
  20. Kang IS, Jin K, Lau KM, Shukla J et al (2002) Intercomparison of atmospheric GCM simulated anomalies associated with the 1997/98 El Nino. J Clim 15:2791–2805. doi:10.1175/1520-0442(2002)015<2791:IOAGSA>2.0.CO;2CrossRefGoogle Scholar
  21. Kinter III JL, Miyakoda K, Yang S (2002) Recent changes in the connection from the Asian monsoon to ENSO. J Clim 15:1203–1215. doi:10.1175/1520-0442(2002)015<1203:RCITCF>2.0.CO;2CrossRefGoogle Scholar
  22. Krishnamurti TN, Vijaya Kumar TSV, Mitra AK (2006) Seasonal climate prediction of Indian summer monsoon. In: Wang B (ed) The Asian Monsoon. Springer/Praxis Publishing, New York, pp 553–583CrossRefGoogle Scholar
  23. Kucharski F, Scaife AA, Yoo JH, Folland CK et al (2008) The CLIVAR C20C Project. Skill of simulating Indian monsoon rainfall on interannual to decadal timescale: does GHG forcing play a role? Clim Dyn. doi:10.1007/s00382-008-0462-y
  24. Kumar KK, Rajagopalan B, Kane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159. doi:10.1126/science.284.5423.2156 CrossRefGoogle Scholar
  25. Kushnir Y, Robinson WA, Blade I et al (2002) Atmospheric GCM response to extratropical SST anomalies: synthesis and evaluation. J Clim 15:2233–2256. doi:10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2CrossRefGoogle Scholar
  26. Lau N-C, Nath MJ (2000) Impact of ENSO on the variability of the Asian–Australian monsoons as simulated in GCM experiments. J Clim 13:4287–4309CrossRefGoogle Scholar
  27. Lau N-C, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20. doi:10.1175/1520-0442(2003)016<0003:AOVITI>2.0.CO;2CrossRefGoogle Scholar
  28. Lau N-C, Wang B (2006) Interactions between the Asian monsoon and the El Nino/Southern Oscillation. In: Wang B (ed) The Asian monsoon. Springer/Praxis Publishing, New York, pp 479–512CrossRefGoogle Scholar
  29. Li T, Wang B (2005) A review on the western North Pacific monsoon: synoptic-to-interannual vriabilities. Terrestrial. Atmos Ocean Sci 16:285–314Google Scholar
  30. Li T, Zhang Y (2002) Processes that determine the quasi-biennial and lower-frequency variability of the South Asian monsoon. J Meteorol Soc Jpn 80:1149–1163. doi:10.2151/jmsj.80.1149 CrossRefGoogle Scholar
  31. Li T, Zhang YC, Chang CP, Wang B (2001) On the relationship between Indian Ocean SST and Asian summer monsoon. Geophys Res Lett 28:2843–2846. doi:10.1029/2000GL011847 CrossRefGoogle Scholar
  32. Li T, Tung YC, Hwu JW (2005) Remote and local SST forcing in shaping Asian–Australian monsoon anomalies. J Meteorol Soc Jpn 83:153–167. doi:10.2151/jmsj.83.153 CrossRefGoogle Scholar
  33. Li T, Liu P, Fu X, Wang B (2006) Spatiotemporal structures and mechanisms of the tropospheric biennial oscillation in the Indo-Pacific warm ocean regions. J Clim 19:3070–3087. doi:10.1175/JCLI3736.1 CrossRefGoogle Scholar
  34. Liu X, Yanai M (2002) Influence of Eurasian spring snow cover on Asian summer rainfall. Int J Climatol 22:1089–1175Google Scholar
  35. McBride JL (1987) The Australian summer monsoon. In: Chang CP, Krishnamurti TN (ed) Monsoon Meteorology. Oxford University Press, USA, pp 203–231Google Scholar
  36. Parthasarathy B, Rupakumar K, Munot AA (1991) Evidence of secular variations in Indian monsoon rainfall-circulation relationships. J Clim 4:927–938. doi:10.1175/1520-0442(1991)004<0927:EOSVII>2.0.CO;2CrossRefGoogle Scholar
  37. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice and night marine air temperature since the late nineteenth century. J Geophys Res. doi:10.1029/2002JD002670
  38. Scaife AA, Kucharski F, Folland CK, Kinter J et al (2008) The CLIVAR C20C Project: Selected 20th century climate events. Clim Dyn. doi:10.1007/s00382-008-0451-1
  39. Sperber KR, Palmer TN (1996) Interannual Tropical rainfall variability in general circulation model simulations associated with the Atmospheric Model Intercomparison Project. J Clim 9:2727–2750. doi:10.1175/1520-0442(1996)009<2727:ITRVIG>2.0.CO;2CrossRefGoogle Scholar
  40. Sperber KR, Brankovic C, Deque M, Frederiksen CS, Graham, R. et al (2001) Dynamical seasonal predictability of the Asian summer monsoon. Mon Weather Rev 129:2226–2248. doi:10.1175/1520-0493(2001)129<2226:DSPOTA>2.0.CO;2Google Scholar
  41. Trenberth KE, Jones PD, Ambenje P, Bojariu R, Easterling D, Klein Tank A, Parker D, Rahimzadeh F, Renwick JA, Rusticucci M, Soden B, Zhai P (2007) Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  42. Turner AG, Inness PM, Slingo JM (2005) The role of the basic state in the ENSO-monsoon relationship and implications for predictability. Q J R Meteorol Soc 131:781–804. doi:10.1256/qj.04.70 CrossRefGoogle Scholar
  43. Uppala SM, Kallberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi:10.1256/qj.04.176 CrossRefGoogle Scholar
  44. Wang H (2001) The weakening of Asian monsoon circulation after the end of 1970s. Adv Atmos Sci 18:376–386. doi:10.1007/BF02919316 CrossRefGoogle Scholar
  45. Wang B (2006) The Asian Monsoon. Springer/Praxis Publishing, New YorkGoogle Scholar
  46. Wang B, Ding Q (2006) Changes in global monsoon precipitation over the past 56 years. Geophys Res Lett. doi:10.1029/2005GL025347
  47. Wang B, Zhang Q (2002) Pacific-East Asian teleconnection, part II: How the Philippine Sea anticyclone established during development of El Nino. J Clim 15:3252–3265. doi:10.1175/1520-0442(2002)015<3252:PEATPI>2.0.CO;2CrossRefGoogle Scholar
  48. Wang B, Wu R, Fu X (2000) Pacific-East Asia teleconnection: How does ENSO affect East Asian climate? J Clim 13:1517–1536. doi:10.1175/1520-0442(2000)013<1517:PEATHD>2.0.CO;2CrossRefGoogle Scholar
  49. Wang B, Wu R, Lau KM (2001) Interannual Variability of the Asian Summer Monsoon: contrasts between the Indian and the Western North Pacific-East Asian Monsoons. J Clim 14:4073–4090. doi:10.1175/1520-0442(2001)014<4073:IVOTAS>2.0.CO;2CrossRefGoogle Scholar
  50. Wang B, Kang IS, Lee JY (2004) Ensemble Simulations of Asian–Australian Monsoon Variability by 11 AGCMs. J Clim 17:803–818. doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2CrossRefGoogle Scholar
  51. Wang B, Ding QH, Fu XH, Kang IS, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett. doi:10.1029/2005GL022734
  52. Wang B, Yang J, Zhou T, Wang B (2008) Interdecadal changes in the major modes of Asian–Australian monsoon variability: Strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789. doi:10.1175/2007JCLI1981.1 CrossRefGoogle Scholar
  53. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118:877–926. doi:10.1002/qj.49711850705 CrossRefGoogle Scholar
  54. Wu R, Kirtman BP (2005) Roles of Indian and Pacific Ocean air-sea coupling in tropical atmospheric variability. Clim Dyn 25:155–170. doi:10.1007/s00382-005-0003-x CrossRefGoogle Scholar
  55. Wu R, Kirtman B, Pegion K (2006) Local air-sea relationship in observations and model simulations. J Clim 19:4914–4932. doi:10.1175/JCLI3904.1 CrossRefGoogle Scholar
  56. Yang S, Lau KM (2006) Interannual variability of the Asian monsoon. In: Wang B (ed) The Asian monsoon. Springer/Praxis Publishing, New York, pp 259–293CrossRefGoogle Scholar
  57. Yu R, Zhou T (2007) Seasonality and three-dimensional structure of the interdecadal change in East Asian monsoon. J Clim 20:5344–5355. doi:10.1175/2007JCLI1559.1 CrossRefGoogle Scholar
  58. Yu R, Wang B, Zhou T (2004) Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys Res Lett. doi:10.1029/2004GL021270
  59. Zhou T, Li Z (2002) Simulation of the East Asian summer monsoon by using a variable resolution atmospheric GCM. Clim Dyn 19:167–180. doi:10.1007/s00382-001-0214-8 CrossRefGoogle Scholar
  60. Zhou T, Yu R (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J. Geophys. Res. doi:10.1029/2004JD005413
  61. Zhou T, Yu R (2006) Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J Clim 19:5843–5858. doi:10.1175/JCLI3952.1 CrossRefGoogle Scholar
  62. Zhou T, Wu B, Wang B (2008a) How well do atmospheric general circulation models capture the leading modes of the interannual variability of Asian–Australian Monsoon? J Clim (in press)Google Scholar
  63. Zhou T, Zhang L, Li H (2008b) Changes in global land monsoon area and total rainfall accumulation over the last half century. Geophys Res Lett 35:L16707. doi:10.1029/2008GL034881 CrossRefGoogle Scholar
  64. Zhou T, Yu R, Li H, Wang B (2008c) Ocean forcing to changes in global monsoon precipitation over the recent half century. J Clim 21:3833–3852. doi:10.1175/2008JCLI2067.1 CrossRefGoogle Scholar
  65. Zhou T, Yu R, Zhang J, Drange H, Cassou C, Deser C, Hodson DLR, Sanchez-Gomez E, Li J, Keenlyside N, Xin X, Okumura Y (2008d), Why the Western Pacific subtropical high has extended westward since the late 1970s. J. Clim (in revision)Google Scholar
  66. Zhu C, Lee WS, Kang H, Park CK (2005) A proper monsoon index for seasonal and interannual variations of the East Asian monsoon. Geophys Res Lett. doi:10.1029/2004GL021295

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Tianjun Zhou
    • 1
  • Bo Wu
    • 1
    • 2
  • A. A. Scaife
    • 3
  • S. Brönnimann
    • 4
  • A. Cherchi
    • 5
  • D. Fereday
    • 3
  • A. M. Fischer
    • 4
  • C. K. Folland
    • 3
  • K. E. Jin
    • 7
  • J. Kinter
    • 7
  • J. R. Knight
    • 3
  • F. Kucharski
    • 6
  • S. Kusunoki
    • 9
  • N.-C. Lau
    • 8
  • Lijuan Li
    • 1
  • M. J. Nath
    • 8
  • T. Nakaegawa
    • 9
  • A. Navarra
    • 5
  • P. Pegion
    • 10
  • E. Rozanov
    • 4
    • 11
  • S. Schubert
    • 10
  • P. Sporyshev
    • 12
  • A. Voldoire
    • 13
  • Xinyu Wen
    • 1
    • 14
  • J. H. Yoon
    • 15
  • N. Zeng
    • 15
  1. 1.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina
  3. 3.Met Office Hadley CentreExeterUK
  4. 4.Institute for Atmospheric and Climate ScienceETHZurichSwitzerland
  5. 5.Centro Euromediterraneo per i Cambiamenti Climatici, Istituto Nazionale di Geofisica e VulcanologiaBolognaItaly
  6. 6.Abdus Salam International Center for Theoretical PhysicsTriesteItaly
  7. 7.Centre for Ocean-Land-Atmosphere StudiesCalvertonUSA
  8. 8.Geophysical Fluid Dynamics LaboratoryNOAAPrincetonUSA
  9. 9.Meteorological Research InstituteJapan Meteorological AgencyTsukubaJapan
  10. 10.NASA Goddard Space Flight CenterGreenbeltUSA
  11. 11.Physical-Meteorological ObservatoryWorld Radiation CenterDavosSwitzerland
  12. 12.Voeikov Main Geophysical ObservatorySt PetersburgRussia
  13. 13.CNRM, Meteo FranceToulouse Cedex 1France
  14. 14.Department of Atmospheric SciencesBeijing UniversityBeijingChina
  15. 15.University of MarylandBaltimoreUSA

Personalised recommendations