Climate Dynamics

, Volume 33, Issue 7–8, pp 999–1016 | Cite as

Consistent past half-century trends in the atmosphere, the sea ice and the ocean at high southern latitudes

  • Hugues GoosseEmail author
  • Wouter Lefebvre
  • Anne de Montety
  • Elisabeth Crespin
  • Alejandro H. Orsi


Simulations performed with the climate model LOVECLIM, aided with a simple data assimilation technique that forces a close matching of simulated and observed surface temperature variations, are able to reasonably reproduce the observed changes in the lower atmosphere, sea ice and ocean during the second half of the twentieth century. Although the simulated ice area slightly increases over the period 1980–2000, in agreement with observations, it decreases by 0.5 × 106 km2 between early 1960s and early 1980s. No direct and reliable sea ice observations are available to firmly confirm this simulated decrease, but it is consistent with the data used to constrain model evolution as well as with additional independent data in both the atmosphere and the ocean. The simulated reduction of the ice area between the early 1960s and early 1980s is similar to the one simulated over that period as a response to the increase in greenhouse gas concentrations in the atmosphere while the increase in ice area over the last decades of the twentieth century is likely due to changes in atmospheric circulation. However, the exact contribution of external forcing and internal variability in the recent changes cannot be precisely estimated from our results. Our simulations also reproduce the observed oceanic subsurface warming north of the continental shelf of the Ross Sea and the salinity decrease on the Ross Sea continental shelf. Parts of those changes are likely related to the response of the system to the external forcing. Modifications in the wind pattern, influencing the ice production/melting rates, also play a role in the simulated surface salinity decrease.


Data Assimilation Southern Ocean Forced Response High Southern Latitude Weddell Polynya 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



H. Goosse is Research Associate with the Fonds National de la Recherche Scientifique (FNRS-Belgium). This work is supported by the FNRS and by the Belgian Federal Science Policy Office, Research Program on Science for a Sustainable Development. We would like to thank Marie-France Loutre for her help in the experimental design and Martin Vancoppenolle for a careful reading of the manuscript. We acknowledge the international modelling groups for providing their data for analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the model data, the JSC/CLIVAR Working Group on Coupled Modelling (WGCM) and their Coupled Model Intercomparison Project (CMIP) and Climate Simulation Panel for organising the model data analysis activity, and the IPCC WG1 TSU for technical support. The IPCC Data Archive at Lawrence Livermore National Laboratory is supported by the Office of Science, US Department of Energy. This work was initiated during the CLIVAR/CliC/SCAR Southern Ocean Region Implementation Panel meeting held in Buenos Aires, 14–17 November 2006.


  1. Abram NJ, Mulvaney R, Wolff EW, Mudelsee M (2007) Ice core records as sea ice proxies: an evaluation from the Weddell Sea region of Antarctica. J Geophys Res 112:D15101. doi: 10.1029/2006JD008139 CrossRefGoogle Scholar
  2. Ackley S, Wadhams P, Comiso JC, Worby AP (2003) Decadal decrease of Antarctic sea ice extent inferred from whaling records revisited on the basis of historical and modern sea ice records. Polar Res 22(1):19–25. doi: 10.1111/j.1751-8369.2003.tb00091.x CrossRefGoogle Scholar
  3. Aoki S, Rintoul SR, Ushio S, Watanabe S, Bindoff NL (2005a) Freshening of the Adélie Land bottom water near 140°E. Geophys Res Lett 32:L23601. doi: 10.1029/2005GL024246 CrossRefGoogle Scholar
  4. Aoki S, Bindoff NL, Church JA (2005b) Interdecadal water mass changes in the Southern Ocean between 30°E and 160°E. Geophys Res Lett 32:L07607. doi: 10.1029/2004GL022220 CrossRefGoogle Scholar
  5. Arblaster JM, Meehl GA (2006) Contributions of external forcings to southern annular mode trends. J Clim 19(12):2896–2905. doi: 10.1175/JCLI3774.1 CrossRefGoogle Scholar
  6. Arzel O, Fichefet T, Goosse H (2006) Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCM. Ocean Model 12:401–415. doi: 10.1016/j.ocemod.2005.08.002 CrossRefGoogle Scholar
  7. Assmann KM, Timmermann R (2005) Variability of dense water formation in the Ross Sea. Ocean Dyn 55:68–87. doi: 10.1007/s10236-004-0106-7 CrossRefGoogle Scholar
  8. Beckmann A, Goosse H (2003) A parameterization of ice shelf-ocean interactions for climate models. Ocean Model 5(2):157–170. doi: 10.1016/S1463-5003(02)00019-7 CrossRefGoogle Scholar
  9. Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450. doi: 10.1175/JCLI3756.1 CrossRefGoogle Scholar
  10. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res 111(D12):D12106. doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  11. Brovkin V, Bendtsen J, Claussen M, Ganopolski A, Kubatzki C, Petoukhov V, Andreev A (2002) Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with the CLIMBER-2 model. Global Biogeochem Cycles 16. doi: 10.1029/2001GB001662
  12. Cai WJ, Cowan T (2007) Trends in Southern Hemisphere circulation in IPCC AR4 models over 1950–99: ozone depletion versus greenhouse forcing. J Clim 20:681–693. doi: 10.1175/JCLI4028.1 CrossRefGoogle Scholar
  13. Carsey FD (1980) Microwave observation of the Weddell Polynya. Mon Weather Rev 108:2032–2044. doi:10.1175/1520-0493(1980)108<2032:MOOTWP>2.0.CO;2CrossRefGoogle Scholar
  14. Cavalieri DJ, Parkinson CL, Vinnikov KY (2003) 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys Res Lett 30(18):1970. doi: 10.1029/2003GL018931, doi: 10.1029/2003GL018031
  15. Chapman WL, Walsh JE (2007) A synthesis of Antarctic temperatures. J Clim 20:4096–4117. doi: 10.1175/JCLI4236.1 CrossRefGoogle Scholar
  16. Ciasto LM, Thompson DWJ (2007) Observations of large-scale ocean-atmosphere interaction in the Southern Hemisphere. J Clim 21:1244–1259. doi: 10.1175/2007JCLI1809.1 CrossRefGoogle Scholar
  17. Collins M (2003) Quantitative use of paleo-proxy data in global circulation models. Geophys Res Abstracts 5:0114Google Scholar
  18. Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J Clim 13(10):1674–1696. doi:10.1175/1520-0442(2000)013<1674:VATIAS>2.0.CO;2CrossRefGoogle Scholar
  19. Comiso JC, Nishio F (2008) Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J Geophys Res 113:C02S07. doi: 10.1029/2007JC004257 CrossRefGoogle Scholar
  20. Cotté C, Guinet C (2007) Historical whaling records reveal major regional retreat of Antarctic sea ice. Deep Sea Res Part I Oceanogr Res Pap 54:243–252. doi: 10.1016/j.dsr.2006.11.001 CrossRefGoogle Scholar
  21. Crook JA, Gillett NP, Keeley SPE (2008) Sensitivity of Southern Hemisphere climate to zonal asymmetry in ozone. Geophys Res Lett 35:L07806. doi: 10.1029/2007GL032698 CrossRefGoogle Scholar
  22. Curran MA, van Ommen TD, Morgan VI, Phillips KL, Palmer AS (2003) Ice core evidence for Antarctic sea ice decline since the 1950s. Science 232:1203–1206. doi: 10.1126/science.1087888 CrossRefGoogle Scholar
  23. de la Mare WK (1997) Abrupt mid-twentieth-century decline in Antarctic sea-ice extent from whaling records. Nature 389:57–60. doi: 10.1038/37956 CrossRefGoogle Scholar
  24. de la Mare WK (2008) Changing in Antarctic sea-ice extent from direct historical observations and whaling records. Clim ChangeGoogle Scholar
  25. Driesschaert E, Fichefet T, Goosse H, Huybrechts P, Janssens I, Mouchet A, Munhoven G, Brovkin V, Weber SL (2007) Modeling the influence of Greenland ice sheet melting on the Atlantic meridional overturning circulation during the next millennia. Geophys Res Lett 34:L10707. doi: 10.1029/2007GL029516 CrossRefGoogle Scholar
  26. Fahrbach E, Hoppema M, Rohardt G, Schröder M, Wisotzki A (2004) Decadal-scale variations of water mass properties in the deep Weddell Sea. Ocean Dyn 54:77–91. doi: 10.1007/s10236-003-0082-3 CrossRefGoogle Scholar
  27. Fahrbach E, Hoppema M, Rohardt G, Schröder M, Wisotzki A (2006) Causes of deep-water variation: comment on the paper by L.H. Smedsrud “Warming of the deep water in the Weddell Sea along the Greenwich meridian: 1977–2001”. Deep Sea Res Part I Oceanogr Res Pap 53:574–577. doi: 10.1016/j.dsr.2005.12.003 CrossRefGoogle Scholar
  28. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  29. Fyfe JC (2006) Southern Ocean warming due to human influence. Geophys Res Lett 33:L19701. doi: 10.1029/2006GL027247 CrossRefGoogle Scholar
  30. Fyfe JC, Saenko O (2006) Simulated changes in the extratropical southern hemisphere winds and currents. Geophys Res Lett 33:L06701. doi: 10.1029/2005GL025332 CrossRefGoogle Scholar
  31. Gille ST (2002) Warming of the Southern Ocean since the 1950s. Science 295:1275–1277. doi: 10.1126/science.1065863 CrossRefGoogle Scholar
  32. Gillett NP, Thompson DWJ (2003) Simulation of recent Southern Hemisphere climate change. Science 302(5643):273–275. doi: 10.1126/science.1087440 CrossRefGoogle Scholar
  33. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi: 10.1029/2007JD008972 CrossRefGoogle Scholar
  34. Gong D, Wang S (1999) Definition of Antarctic oscillation index. Geophys Res Lett 26(4):459–462. doi: 10.1029/1999GL900003 CrossRefGoogle Scholar
  35. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23337–23355. doi: 10.1029/1999JC900215 CrossRefGoogle Scholar
  36. Goosse H, Renssen H (2001) A two-phase response of Southern Ocean to an increase in greenhouse gas concentrations. Geophys Res Lett 28:3469–3473. doi: 10.1029/2001GL013525 CrossRefGoogle Scholar
  37. Goosse H, Renssen H (2005) A simulated reduction in Antarctic sea-ice area since 1750: implications of the long memory of the ocean. Int J Clim 25:569–579. doi: 10.1002/joc.1139 CrossRefGoogle Scholar
  38. Goosse H, Renssen H, Timmermann A, Bradley RS, Mann ME (2006) Using paleoclimate proxy-data to select optimal realisations in an ensemble of simulations of the climate of the past millennium. Clim Dyn 27:165–184. doi: 10.1007/s00382-006-0128-6 CrossRefGoogle Scholar
  39. Goosse H, Driesschaert E, Fichefet T, Loutre MF (2007) Information on the early Holocene climate constrains the summer sea ice projections for the 21st century. Clim Past 3:683–692CrossRefGoogle Scholar
  40. Gordon AL (1978) Deep Antarctic convection West of Maud rise. J Phys Oceanogr 8:600–612. doi:10.1175/1520-0485(1978)008<0600:DACWOM>2.0.CO;2CrossRefGoogle Scholar
  41. Gordon AL (1982) Weddell deep water variability. J Mar Res 40(suppl):199–217Google Scholar
  42. Gordon AL (1998) Western Weddell Sea thermohaline circulation stratification. In: Ocean, ice and atmosphere: interactions at Antarctic Continental Margin, Antar. Res. Ser. 75, edited by SS Jacobs and R Weiss, 215–240, AGU, Washington, DCGoogle Scholar
  43. Gordon AL, Visbeck M, Comiso J (2007) A possible link between the Weddell Polynya and the Southern annular mode. J Clim 20:2258–2571. doi: 10.1175/JCLI4046.1 CrossRefGoogle Scholar
  44. Gregory JM (2000) Vertical heat transport in the ocean and their effect on time-dependent climate change. Clim Dyn 16:501–515. doi: 10.1007/s003820000059 CrossRefGoogle Scholar
  45. Jacobs SS, Giulivi CF, Mele PA (2002) Freshening of the Ross Sea during the late 20th century. Science 297:386–389. doi: 10.1126/science.1069574 CrossRefGoogle Scholar
  46. Jones JM, Widmann M (2003) Instrument- and tree-ring based estimates of the Antarctic oscillation. J Clim 16:3511–3524. doi:10.1175/1520-0442(2003)016<3511:IATEOT>2.0.CO;2CrossRefGoogle Scholar
  47. Jones JM, Widmann M (2004) Early peak in Antarctic oscillation index. Nature 432:290–291. doi: 10.1038/432290b CrossRefGoogle Scholar
  48. Lefebvre W, Goosse H (2008a) Analysis of the projected regional sea-ice changes in the Southern Ocean during the 21st century. Clim Dyn 30:59–76. doi: 10.1007/s00382-007-0273-6 CrossRefGoogle Scholar
  49. Lefebvre W, Goosse H (2008b) An analysis of the atmospheric processes driving the large-scale winter sea-ice variability in the Southern Ocean. J Geophys Res 113:C02004. doi: 10.1029/2006JC004032 CrossRefGoogle Scholar
  50. Lefebvre W, Goosse H, Timmermann R, Fichefet T (2004) Influence of the southern annular mode on the sea-ice-ocean system. J Geophys Res 109:C090005. doi: 10.1029/2004JC002403 CrossRefGoogle Scholar
  51. Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  52. Liu J, Curry JA, Martinson DG (2004) Interpretation of recent Antarctic sea ice variability. Geophys Res Lett 31:L02205. doi: 10.1029/2003GL018732 CrossRefGoogle Scholar
  53. Manabe S, Stouffer RJ, Spelman MJ, Bryan K (1991) Transient responses of a coupled atmosphere-ocean model to gradual changes of atmospheric CO2. I. Annual mean response. J Clim 4:785–818. doi:10.1175/1520-0442(1991)004<0785:TROACO>2.0.CO;2CrossRefGoogle Scholar
  54. Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 14:4134–4143. doi:10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2CrossRefGoogle Scholar
  55. Marshall GJ (2007) Half-century seasonal relationships between the southern annual mode and Antarctic temperatures. Int J Clim 27:373–383. doi: 10.1002/joc.1407 CrossRefGoogle Scholar
  56. Marshall GJ, Orr A, van Lipzig NPM, King JC (2006) The impact of a changing southern hemisphere annular mode on Antarctic Peninsula summer temperatures. J Clim 19:5388–5404. doi: 10.1175/JCLI3844.1 CrossRefGoogle Scholar
  57. Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  58. Meredith MP, King JC (2005) Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Lett 32(19):L19604CrossRefGoogle Scholar
  59. Miller RL, Schmidt GA, Shindell DT (2006) Forced annular variations in the 20th century intergovernmental panel on climate change fourth assessment report models. J Geophys Res 111(D18):D18101. doi: 10.1029/2005JD006323 CrossRefGoogle Scholar
  60. Monaghan AJ, Bromwich DH, Chapman W, Comiso JC (2008) Recent variability and trends of Antarctic near-surface temperature. J Geophys Res 113:D04105. doi: 10.1029/2007JD009094 CrossRefGoogle Scholar
  61. Murphy EJ, Clarke A, Symon C, Priddle J (1995) Temporal variation in Antarctic sea-ice: analysis of a long term fast-ice record from the South Orkney Islands. Deep Sea Res Part I Oceanogr Res Pap 42:1045–1062. doi: 10.1016/0967-0637(95)00057-D CrossRefGoogle Scholar
  62. Opsteegh JD, Haarsma RJ, Selten FM, Kattenberg A (1998) ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. Tellus 50A:348–367Google Scholar
  63. Orsi AH, Wiederwohl CL (2008) A recount of Ross Sea waters. Deep Sea Res Part II Top Stud Oceanogr (in press)Google Scholar
  64. Ozsoy-Cicek B, Xie H, Ackley SF, Ye K (2008) Antarctic summer sea ice concentration and extent: comparison of ODEN 2006 ship observations, satellite passive microwave and NIC sea ice charts. Cryosphere Discuss 2:623–647Google Scholar
  65. Parkinson CL, Vinnikov KY, Cavalieri DJ (2006) Evaluation of the simulation of the annual cycle of Arctic and Antarctic sea ice coverages by 11 major global climate models. J Geophys Res 111(C7):C07012. doi: 10.1029/2005JC003408 CrossRefGoogle Scholar
  66. Raphael MN, Holland MM (2005) Twentieth century simulation of the southern hemisphere climate in coupled models. Part 1: large-scale circulation variability. Clim Dyn 26:217–228. doi: 10.1007/s00382-005-0082-8 CrossRefGoogle Scholar
  67. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and nigh marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  68. Rintoul SR (2007) Rapid freshening of Antarctic Bottom Water formed in the Indian and Pacific oceans. Geophys Res Lett 34:L06606. doi: 10.1029/2006GL028550 CrossRefGoogle Scholar
  69. Robertson R, Visbeck M, Gordon AL, Fahrbach E (2002) Long-term temperature trends in the deep waters of the Weddell Sea. Deep Sea Res Part II Top Stud Oceanogr 49:4791–4806. doi: 10.1016/S0967-0645(02)00159-5 CrossRefGoogle Scholar
  70. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to an anthropogenic climate warming. Nature 393:245–249. doi: 10.1038/30455 CrossRefGoogle Scholar
  71. Sen Gupta A, England MH (2006) Coupled ocean-atmosphere-ice response to variations in the southern annular mode. J Clim 19:4457–4486. doi: 10.1175/JCLI3843.1 CrossRefGoogle Scholar
  72. Smedsrud LH (2005) Warming of the deep water in the Weddell Sea along the Greenwich meridian: 1977–2001. Deep Sea Res Part I Oceanogr Res Pap 52:241–258. doi: 10.1016/j.dsr.2004.10.004 CrossRefGoogle Scholar
  73. Son SW, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the southern hemisphere westerly jet. Science 320:1486–1489. doi: 10.1126/science.1155939 CrossRefGoogle Scholar
  74. Stammerjohn SE, Martinson DG, Smith RC, Yuan X, Rind D (2008) Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annual Mode variability. J Geophys Res 113:C03S90. doi: 10;1029/2007JC004269 CrossRefGoogle Scholar
  75. Steig EJ, Schneider DP, Rutherford SD, Mann ME, Comiso JC, Shindell DT (2008) Warming of the Antarctic ice sheet surface since the 1957 international geophysical year. Nature (in press)Google Scholar
  76. Stover CL (2006) A new account of Ross Sea waters characteristics. Dissertation, Texas A&M University, p 112Google Scholar
  77. Swingedouw D, Fichefet T, Huybrechts P, Goosse H, Driesschaert E, Loutre MF (2008) Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophys Res Lett 35:L17705. doi: 10.1029/2008GL034410 CrossRefGoogle Scholar
  78. Thompson DWJ, Solomon S (2002) Interpretation of Recent southern hemisphere climate change. Science 296:895–899. doi: 10.1126/science.1069270 CrossRefGoogle Scholar
  79. Turner J, Colwell SR, Marshall GJ, Lachlan-Cope TA, Carleton AM, Jones PD, Lagun V, Reid PA, Iagovkina S (2005) Antarctic climate change during the last 50 years. Int J Clim 25:279–294. doi: 10.1002/joc.1130 CrossRefGoogle Scholar
  80. van Lipzig NPM, Marshall GJ, Orr A, King JC (2008) The relationship between the southern hemisphere annular mode and Antarctic Peninsula temperatures: analysis of a high-resolution model climatology. J Clim 21:1649–1668. doi: 10.1175/2007JCLI1695.1 CrossRefGoogle Scholar
  81. Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274. doi: 10.1023/A:1026021217991 CrossRefGoogle Scholar
  82. Whitworth TIII (2002) Two modes of bottom water in the Australian-Antarctic Basin. Geophys Res Lett 29:1073. doi: 10.1029/2001GL014282 CrossRefGoogle Scholar
  83. Yuan X, Li C (2008) Climate modes in southern high latitudes and their impact on Antarctic sea ice. J Geophys Res 113:C06S91. doi: 10.1029/2006JC004067 CrossRefGoogle Scholar
  84. Zhang J (2007) Increasing Antarctic sea ice under warming atmospheric and oceanic conditions. J Clim 20:2515–2529. doi: 10.1175/JCLI4136.1 CrossRefGoogle Scholar
  85. Zwally HJ, Comiso JC, Parkinson CL, Cavalieri DJ, Gloersen P (2002) Variability of Antarctic sea ice 1979–1998. J Geophys Res 107(C5). doi: 10.1029/2000JC000733

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Hugues Goosse
    • 1
    Email author
  • Wouter Lefebvre
    • 1
    • 3
  • Anne de Montety
    • 1
  • Elisabeth Crespin
    • 1
  • Alejandro H. Orsi
    • 2
  1. 1.Institut d’Astronomie et de Géophysique G. LemaîtreUniversité Catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Department of OceanographyTexas A&M UniversityCollege StationUSA
  3. 3.The Vlaams Instituut voor Technologisch Onderzoek (VITO)MolBelgium

Personalised recommendations