Climate Dynamics

, Volume 34, Issue 2–3, pp 185–200 | Cite as

The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models

  • Marika M. HollandEmail author
  • Mark C. Serreze
  • Julienne Stroeve


Arctic sea ice mass budgets for the twentieth century and projected changes through the twenty-first century are assessed from 14 coupled global climate models. Large inter-model scatter in contemporary mass budgets is strongly related to variations in absorbed solar radiation, due in large part to differences in the surface albedo simulation. Over the twenty-first century, all models simulate a decrease in ice volume resulting from increased annual net melt (melt minus growth), partially compensated by reduced transport to lower latitudes. Despite this general agreement, the models vary considerably regarding the magnitude of ice volume loss and the relative roles of changing melt and growth in driving it. Projected changes in sea ice mass budgets depend in part on the initial (mid twentieth century) ice conditions; models with thicker initial ice generally exhibit larger volume losses. Pointing to the importance of evolving surface albedo and cloud properties, inter-model scatter in changing net ice melt is significantly related to changes in downwelling longwave and absorbed shortwave radiation. These factors, along with the simulated mean and spatial distribution of ice thickness, contribute to a large inter-model scatter in the projected onset of seasonally ice-free conditions.


Arctic sea ice Climate change Climate models 



This study was supported by NASA grant NNG06GB26G and NSF grant ARC-0531040. We acknowledge the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. NCAR is supported by the National Science Foundation.


  1. ACIA (2005) Impacts of a warming Arctic. Arctic Climate Impact Assessment (ACIA). Cambridge University Press, Cambridge, 140 ppGoogle Scholar
  2. Arzel O, Fichefet T, Goosse H (2006) Sea ice evolution over the 20th and 21st centuries as simulated by current AOGCMs. Ocean Model 12:401–415. doi: 10.1016/j.ocemod.2005.08.002 CrossRefGoogle Scholar
  3. Arzel O, Fichefet T, Goosse H, Dufresne J-L (2008) Causes and impacts of changes in the Arctic freshwater budget during the 20th and 21st centuries in an AOGCM. Clim Dyn 30:37–58. doi: 10.1007/s00382-007-0258-5 CrossRefGoogle Scholar
  4. Belchansky GI, Douglas DC, Platonov NG (2004) Duration of the Arctic sea ice melt season: regional and interannual variability, 1979–2001. J Clim 17:67–80. doi:10.1175/1520-0442(2004)017<0067:DOTASI>2.0.CO;2CrossRefGoogle Scholar
  5. Bitz CM, Roe GH (2004) A mechanism for the high rate of sea-ice thinning in the Arctic Ocean. J Clim 17:3622–3631. doi:10.1175/1520-0442(2004)017<3623:AMFTHR>2.0.CO;2CrossRefGoogle Scholar
  6. Bitz CM, Gent PR, Woodgate RA, Holland MM, Lindsay R (2006) The influence of sea ice on ocean heat uptake in response to increasing CO2. J Clim 19:2437–2450. doi: 10.1175/JCLI3756.1 CrossRefGoogle Scholar
  7. Bourke RH, Garrett RP (1987) Sea ice thickness distribution in the Arctic Ocean. Cold Reg Sci Technol 13:259–280. doi: 10.1016/0165-232X(87)90007-3 CrossRefGoogle Scholar
  8. Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Clim 20:609–632. doi: 10.175/JCLI4026.1 CrossRefGoogle Scholar
  9. DeWeaver ET, Hunke EC, Holland MM (2008) Comment on “On the reliability of simulated Arctic sea ice in global climate models’’ by I. Eisenman, N. Untersteiner, and J. S. Wettlaufer. Geophys Res Lett 35:L04501. doi: 10.1029/2007GL031325 CrossRefGoogle Scholar
  10. Gerdes R, Koberle C (2007) Comparison of Arctic sea ice thickness variability in IPCC climate of the 20th century experiments and in ocean–sea ice hindcasts. J Geophys Res 112:C04S13. doi: 10.1029/2006JC003616 CrossRefGoogle Scholar
  11. Gorodetskaya IV, Tremblay LB, Liepert B, Cane MA, Cullather RI (2008) The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J Clim 21. doi: 10.1175/2007JCLI1614.1
  12. Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232. doi: 00382-003-0332-6 CrossRefGoogle Scholar
  13. Holland MM, Bitz CM, Tremblay B (2006a) Future abrupt reductions in the Summer Arctic sea ice. Geophys Res Lett 33:L23503. doi: 10.1029/2006GL028024 CrossRefGoogle Scholar
  14. Holland MM, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2006b) Influence of the sea ice thickness distribution on Polar Climate in CCSM3. J Clim 19:2398–2414. doi: 10.1175/JCLI3751.1 CrossRefGoogle Scholar
  15. Houghton JT et al (eds) (2001) Climate change 2001: the scientific basis, Cambridge University Press, CambridgeGoogle Scholar
  16. IPCC (2007) Climate change 2007: the physical science basis. In: Solomon SD, Qin M, Manning ZC, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 996 ppGoogle Scholar
  17. Manabe S, Stouffer RJ (1980) Sensitivity of a global climate model to an increase of CO2 in the atmosphere. J Geophys Res 85(C10):5529–5554. doi: 10.1029/JC085iC10p05529 CrossRefGoogle Scholar
  18. Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally HJ, Yi D, Emery WJ (2007) A younger, thinner ice cover: increased potential for rapid, extensive ice loss. Geophys Res Lett 34:L24501. doi: 10.1029/2007GL032043 CrossRefGoogle Scholar
  19. Maykut G (1982) Large-scale heat exchange and ice production in the Central Arctic. J Geophys Res 87:7971–7984. doi: 10.1029/JC087iC10p07971 CrossRefGoogle Scholar
  20. Maykut GA (1986) The surface heat and mass balance. In: Untersteiner N (ed) The geophysics of sea ice. Plenum Press, New York, pp 395–464Google Scholar
  21. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer R, Taylor KE (2007) THE WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88. doi: 10.1175/BAMS-88-9-1383
  22. Nghiem SV, Chao Y, Neumann G, Li P, Perovich DK, Street T, Clemente-Colon P (2006) Depletion of perennial sea ice in the East Arctic Ocean. Geophys Res Lett 33:L17501. doi: 10.1029/2006GL027198 CrossRefGoogle Scholar
  23. Overland JE, Spillane MC, Soreide NN (2004) Integrated analysis of physical and biological pan-Arctic change. Clim Change 63:291–322. doi: 10.1023/B:CLIM.0000018512.40506.d2 CrossRefGoogle Scholar
  24. Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26:3469–3472. doi: 10.1029/1999GL010863 CrossRefGoogle Scholar
  25. Serreze MC et al (2000) Observational evidence of recent change in the northern high-latitude environment. Clim Change 46:159–207. doi: 10.1023/A:1005504031923 Google Scholar
  26. Serreze MC et al (2003) A record minimum arctic sea ice extent, area in 2002. Geophys Res Lett 30:1110. doi: 10.1029/2002GL016406 CrossRefGoogle Scholar
  27. Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change.  doi:10.10007/s10584-005-9017
  28. Serreze MC, Holland MM, Stroeve J (2007a) Perspectives on the Arctic’s shrinking sea-ice cover. Science 315:1533–1536. doi: 10.1126/science.1139426 CrossRefGoogle Scholar
  29. Serreze MC, Barrett AP, Slater AG, Steele M, Zhang J, Trenberth KE (2007b) The large-scale energy budget of the Arctic. J Geophys Res 112. doi: 10.1029/2006JD008230
  30. Sorteberg A, Kattsov V, Walsh JE, Pavlova T (2007) The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim Dyn 29. doi: 10.1007/s00382-006-0222-9
  31. Stroeve JC, Serreze MC, Fetterer F, Arbetter T, Meier M, Maslanik J, Knowles K (2005) Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys Res Lett 32:L04501. doi: 10.1029/2004GL021810 CrossRefGoogle Scholar
  32. Stroeve J, Holland MM, Meier W, Scambos T, Serreze MC (2007) Arctic Sea Ice Decline: Faster than Forecast. Geophys Res Lett 34. doi: 10.1029/2007GL029703
  33. Stroeve J, Serreze M, Drobot S, Gearhead S, Holland M, Maslanik J, Meier W, Scambos T (2008) Arctic sea ice plummets in 2007. EOS 89(2):13–14. doi: 10.1029/2008EO020001 CrossRefGoogle Scholar
  34. Vavrus S, Waliser D, Schweiger A, Francis J (2008) Simulations of 20th and 21st century Arctic clouds in the global climate models assessed in the IPCC AR4. Clim Dyn (submitted)Google Scholar
  35. Winton M (2006) Does the Arctic sea ice have a tipping point? Geophys Res Lett 33. doi: 10.1029/2006GL028017
  36. Zhang X, Walsh JE (2006) Toward a seasonally ice-covered Arctic Ocean: scenarios from the IPCC AR4 model simulations. J Clim 19:1730–1747. doi: 10.1175/JCLI3767.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Marika M. Holland
    • 1
    Email author
  • Mark C. Serreze
    • 2
  • Julienne Stroeve
    • 2
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.National Snow and Ice Data Center, Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA

Personalised recommendations