Advertisement

Climate Dynamics

, Volume 33, Issue 7–8, pp 1117–1129 | Cite as

30 and 43 months period cycles found in air temperature time series using the Morlet wavelet method

  • Samuel Nicolay
  • Georges Mabille
  • Xavier Fettweis
  • Michel Erpicum
Article

Abstract

A wavelet-based methodology is applied to relevant climatic indices and air temperature records and allow to detect the existence of unexpected cycles. The scale spectrum shows the presence of two cycles of about 30 and 43 months, respectively, in the air–temperature time series, in addition to the well-known cycles of 1 day and 1 year. The two cycles do not affect the globe uniformly: some regions seem to be more influenced by the period of 30 months (e.g. Europe), while other areas are affected by the period of 43 months (e.g. North-West of the USA). Similar cycles are found in the indices and the regions influenced by these indices: the NAO index and the Western Europe display a cycle of 30 months, while the cycle of 43 months can be found in the ENSO index and in regions where it is known to have an impact.

Keywords

Wavelet analysis Climatic indices Climate variability Temperature cycles 

References

  1. Arneodo A, Grasseau G, Holschneider M (1988) Wavelet transform of multifractals. PRL 61:2281–2287CrossRefGoogle Scholar
  2. Arneodo A, d’Aubenton Carafa Y, Bacry E, Graves P, Muzy J, Thermes C (1996) Wavelet based multifractal analysis of DNA sequences. Phys D 96:291–320CrossRefGoogle Scholar
  3. Arneodo A, Audit B, Decoster N, Muzy J, Vaillant C (2002) Climate disruptions, market crashes and heart attacks. In: Bunde A, Schellnhuber H (eds) The science of disasters. Springer, Berlin, pp 27–102Google Scholar
  4. Baldwin MP et al (2001) The quasi-biennial oscillation. Rev Geophys 39:179–229CrossRefGoogle Scholar
  5. Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  6. Berdyugina SV, Usoskin IG (2003) Active longitutes in sunspot activity: century scale persistence. Astron Astrophys 405:1121CrossRefGoogle Scholar
  7. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12,106CrossRefGoogle Scholar
  8. Daubechies I (1992) Ten lectures on wavelets. SIAM, PhiladelphiaGoogle Scholar
  9. Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002CrossRefGoogle Scholar
  10. Goupillaud P, Grossman A, Morlet J (1984) Cycle-octave and related transforms in seismic signal analysis. Geoexploration 23:85–102CrossRefGoogle Scholar
  11. Hansen J, Ruedy R, JG, Sato M (1999) GISS analysis of surface temperature change. J Geophys Res 104:30,997–31,022Google Scholar
  12. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  13. Jones P, Osborn TJ, Briffa KR, Folland CK, Horton EB, Alexander LV, Parker DE, Rayner NA (2001) Adjusting for sampling density in grid box land and ocean surface temperature time series. J Geophys Res 106:3371–3380CrossRefGoogle Scholar
  14. Kalnay E et al (1996) Ncep/Ncar 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  15. Keller W (2004) Wavelets in geodesy and geodynamics. Gruyter, BerlinCrossRefGoogle Scholar
  16. Klein Tank AMG et al (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453CrossRefGoogle Scholar
  17. Kronland-Martinet R, Morlet J, Grossmann A (1987) Analysis of sound patterns through wavelet transforms. Int J Pattern Recogn Artif Intell 1:273–302CrossRefGoogle Scholar
  18. Mallat S (1999) A wavelet tour of signal processing. Academic Press, New-YorkGoogle Scholar
  19. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  20. Meyer Y (1989) Ondelettes et opérateurs. Hermann, ParisGoogle Scholar
  21. Mursula K, Hiltula T (2004) Systematically asymmetric heliospheric magnetic field: evidence for a quadrupole mode and non-axissymmetry with polarity flip–flops. Sol Phys 224:133–143CrossRefGoogle Scholar
  22. Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313Google Scholar
  23. Newton H, Milsom A (1955) Note on the observed differences in spottedness of the Sun’s Northern and Southern Hemispheres. Monthly Not R Astron Soc 115:398:404Google Scholar
  24. Nicolay S, Argoul F, Touchon M, d’Aubenton Carafa Y, Thermes C, Arneodo A (2004) Low frequency rhythms in human DNA sequences: a key to the organization of gene location and orientation? PRL 93:108,101CrossRefGoogle Scholar
  25. Paluš M, Novotná D (2008) Detecting oscillations hidden in noise: common cycles in atmospheric, geomagnetic and solar data. In: Donner R, Barbosa S (eds) Nonlinear time series analysis in geosciences: applications in climatology, geodynamics and solar–terrestrial physics. Springer, Berlin, pp 327–353Google Scholar
  26. Paluš M, Novotná D (2006) Quasi-biennal oscillations extracted from monthly NAO index and temperature records are phase-synchronized. Nonlinear Proc Geophys 13:287–296CrossRefGoogle Scholar
  27. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19:446–469CrossRefGoogle Scholar
  28. Schwing F, Murphree T, Green P (2002) The northern oscillation index (NOI): a new climate index for the northeast pacific. Prog Oceanogr 53:115–139CrossRefGoogle Scholar
  29. Takalo J, Mursula K (2002) Annual and solar rotation periodicities in IMF components: evidence for phase/frequency modulation. Geophys Res Lett 29:31–1–31–4CrossRefGoogle Scholar
  30. Trenberth K, Hurrell JW (1994) Decadal atmosphere–ocean variations in the pacific. Clim Dyn 9:303–319CrossRefGoogle Scholar
  31. Wolter K, Timlin MS (1993) Monitoring ENSO in coads with a seasonally adjusted principal component index. In: Proceedings of the 17th climate diagnostics workshop, Norman, OK, NOAA/N MC/CAC, NSSL, Oklahoma Clim Survey, CIMMS and the School of Meteor 52–57Google Scholar
  32. Wolter K, Timlin MS (1998) Measuring the strength of ENSO events–how does 199798 rank. Weather 53:315–324Google Scholar
  33. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability. J Clim 10:1004–1020CrossRefGoogle Scholar
  34. Zhou S, Miller AJ, Wang J, Angell JK (2001) Trends of NAO and AO and their associations with stratospheric processes. Geophys Res Lett 28:4107–4110CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Samuel Nicolay
    • 1
  • Georges Mabille
    • 2
  • Xavier Fettweis
    • 2
  • Michel Erpicum
    • 2
  1. 1.Institute of MathematicsUniversity of LiègeLiègeBelgium
  2. 2.Institute of ClimatologyUniversity of LiègeLiègeBelgium

Personalised recommendations