Climate Dynamics

, Volume 32, Issue 2–3, pp 143–165

Orbital forcing and role of the latitudinal insolation/temperature gradient

Article

Abstract

Orbital forcing of the climate system is clearly shown in the Earths record of glacial–interglacial cycles, but the mechanism underlying this forcing is poorly understood. Traditional Milankovitch theory suggests that these cycles are driven by changes in high latitude summer insolation, yet this forcing is dominated by precession, and cannot account for the importance of obliquity in the Ice Age record. Here, we investigate an alternative forcing based on the latitudinal insolation gradient (LIG), which is dominated by both obliquity (in summer) and precession (in winter). The insolation gradient acts on the climate system through differential solar heating, which creates the Earths latitudinal temperature gradient (LTG) that drives the atmospheric and ocean circulation. A new pollen-based reconstruction of the LTG during the Holocene is used to demonstrate that the LTG may be much more sensitive to changes in the LIG than previously thought. From this, it is shown how LIG forcing of the LTG may help explain the propagation of orbital signatures throughout the climate system, including the Monsoon, Arctic Oscillation and ocean circulation. These relationships are validated over the last (Eemian) Interglacial, which occurred under a different orbital configuration to the Holocene. We conclude that LIG forcing of the LTG explains many criticisms of classic Milankovitch theory, while being poorly represented in climate models.

Keywords

Orbital forcing Insolation gradient Temperature gradient Milankovitch Interglacial 

References

  1. Aalbersberg G, Litt T (1998) Multiproxy climate reconstructions for the Eemian and Early Weichselian. J Quaternary Sci 13:367–390. doi :10.1002/(SICI)1099-1417(1998090)13:5<367::AID-JQS400>3.0.CO;2-IGoogle Scholar
  2. Baker A, Smart PL, Edwards RL (1995) Paleoclimate implications of mass spectrometric dating of a British flowstone. Geology 23:309–312. doi :10.1130/0091-7613(1995)023<0309:PIOMSD>2.3.CO;2Google Scholar
  3. Berger A (1978) Long-term variations of daily insolation and Quaternary climate changes. J Atmos Sci 35:2362–2367. doi :10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2Google Scholar
  4. Beyerle U, Rueedi J, Leuenberger M, Aeschbach-Hertig W, Peeters F, Kipfer R, Dodo A (2003) Evidence for periods of wetter and cooler climate in the Sahel between 6 and 40 ka bp derived from groundwater. Geophys Res Lett 30(4):1173. doi:10.1029/2002GL016310 Google Scholar
  5. Blindheim J, Borovkov V, Hansen B, Malmberg SA, Turrell WR, Osterhus S (2000) Upper layer cooling and freshening in the Norwegian Sea in relation to atmospheric forcing. Deep Sea Res Part I Oceanogr Res Pap 47:655–680. doi:10.1016/S0967-0637(99)00070-9 Google Scholar
  6. Blunier T, Chappellaz J, Schwander J, Dallenbach A, Stauffer B, Stocker TF, Raynaud D, Jouzel J, Clausen HB, Hammer CU, Johnsen SJ (1998) Asynchrony of Antarctic and Greenland climate change during the last glacial period. Nature 394(6695):739–743. doi:10.1038/29447 Google Scholar
  7. Bohncke S (1991) Palaeohydrological changes in the Netherlands during the last 13,000 years. Thesis, Vrije University, Amsterdam, p 187Google Scholar
  8. Bohncke S, Wijmstra L (1988) Reconstruction of late-glacial lake-level fluctuations in the Netherlands based on palaeobotanical analyses, geochemical results and pollen density data. Boreas 17:403–425Google Scholar
  9. Bohncke S, Wijmstra L, Vanderwoude J, Sohl H (1988) The lateglacial infill of three lake successions in the Netherlands: regional vegetational history in relation to NW European vegetational developments. Boreas 17:385–402CrossRefGoogle Scholar
  10. Broecker WS (1992) Upset for Milankovitch theory. Nature 359:779–780. doi:10.1038/359779a0 Google Scholar
  11. Braconnot P, Joussaume S, de Noblet N, Ramstein G (2000) Mid-Holocene and Last Glacial Maximum African monsoon changes as simulated within the Palaeoclimate Modelling Intercomparison Project. Global Planet Change 26:51–66. doi:10.1016/S0921-8181(00)00033-3 Google Scholar
  12. Braconnot P, Harrison S, Joussaume CD, Hewitt A, Kitoh JE, Kutzbach J, Liu Z, Otto-Bliesner B, Syktus J, Weber SL (2004) Evaluation of PMIP coupled ocean–atmosphere simulations of the mid-Holocene. In: Battarbee RW, Gasse F, Stickley CE (eds) Past climate variability through Europe and Africa. Kluwer, Dordrecht, pp 515–533Google Scholar
  13. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Fichefet T, Hewitt CD, Kageyamal M, Kitoh A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007a) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 1: experiments and large-scale features. Climates Past 3:261–277Google Scholar
  14. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Fichefet T, Hewitt CD, Kageyamal M, Kitoh A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber L, Yu Y, Zhao Y (2007b) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum—Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budgets. Climates Past 3:279–296Google Scholar
  15. Bradley R (1999) Paleoclimatology: reconstructing climates of the quaternary, 2nd edn. Academic Press, pp 613, ISBN 012124010XGoogle Scholar
  16. Chapman MR, Shackleton NJ, Zhao M, Eglinton G (1996) Faunal and alkenone reconstructions of subtropical North Atlantic surface hydrology and paleotemperature over the last 28 ka. Paleoceanography 11(3):343–357. doi:10.1029/96PA00041 Google Scholar
  17. Claussen M (2003) Simulation of Holocene climate change using climate-system models. In: Mackay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the Holocene. Arnold Publishers, ISBN 0 340 76223 3, pp 422–434Google Scholar
  18. Clemens SC, Prell WL (2007) The timing of orbital-scale Indian monsoon changes. Quat Sci Rev 26:275–278. doi:10.1016/j.quascirev.2006.11.010 Google Scholar
  19. COHMAP members (1988) Climatic changes of the last 18,000 years. Observations and model simulations. Science 241:1043–1052Google Scholar
  20. Cortijo E, Lehman S, Keigwin L, Chapman M, Paillard D, Labeyrie L (1999) Changes in meridional temperature and salinity gradients in the North Atlantic Ocean (30°–72°) during the last interglacial period. Paleoceanography 14(1):23–33Google Scholar
  21. Cuffey KM, Marshall SJ (2000) Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404(6778):591–594Google Scholar
  22. Damnati B (2000) Holocene lake records in the Northern Hemisphere of Africa. J Afr Earth Sc 31(2):253–262Google Scholar
  23. Davis BAS, Brewer S, Stevenson ACS, Guiot J, Data contributors (2003) The temperature of Europe during the Holocene reconstructed from pollen data. Quat Sci Rev 22:1701–1716Google Scholar
  24. deMenocal PB (1995) Plio-Pleistocene African climate. Science 270:53–59Google Scholar
  25. Duplessy J-C, Ivanova E, Murdmaa I, Paterne M, Labeyrie L (2001) Holocene paleoceanography of the northern Barents Sea and variations of the northward heat transport by the Atlantic Ocean. Boreas 30:2–16CrossRefGoogle Scholar
  26. Felis T, Lohmann G, Kuhnert H, Lorenz SJ, Scholz D, Pätzold J, Al-Rousan SA, Al-Moghrabi SM (2004) Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429:164–168Google Scholar
  27. Fleitmann D, Burns SJ, Mudelsee M, Neff U, Kramers J, Mangini A, Matter A (2003a) Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman. Science 300(5626):1737–1739Google Scholar
  28. Fleitmann D, Burns SJ, Neff U, Mangini A, Matter A (2003b) Changing moisture sources over the last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems. Quatern Res 60:223–232Google Scholar
  29. Flohn H (1965) Probleme der theoretischen Klimatologie. Naturwissenschaftliche Rundschau 10:385–392Google Scholar
  30. Fronval T, Jansen E (1996) Rapid changes in ocean circulation and heat flux In the Nordic seas during the last interglacial period. Nature 383(6603):806–810Google Scholar
  31. Gallup CD, Cheng H, Taylor FW, Edwards RL (2002) Direct determination of the timing of sea level change during Termination II. Science 295(5553):310–313Google Scholar
  32. Gallimore R, Jacob R, Kutzbach J (2005) Coupled atmosphere–ocean–vegetation simulations for modern and mid-holocene climates: role of extratropical vegetation cover feedbacks. Climate Dynamics 25(7–8):755–776Google Scholar
  33. Ganopolski A, Kubatzki C, Claussen M, Brovkin V, Petoukhov V (1998) The influence of vegetation–atmosphere–ocean interaction on climate during the mid-Holocene. Science 280(5371):1916–1919Google Scholar
  34. Gladstone RM, Ross I, Valdes PJ, Abe-Ouchi A, Braconnot P, Brewer S, Kageyama M, Kitoh A, Legrande A, Marti O, Ohgaito R, Otto-Bliesner B, Peltier WR, Vettoretti G (2006) Mid-Holocene NAO: a PMIP2 model intercomparison. Geophys Res Lett 32(16):L16707Google Scholar
  35. Gupta AK, Anderson DM, Overpeck JT (2003) Abrupt changes in the Asian southwest monsoon during the Holocene and their links to the North Atlantic Ocean. Nature 421(6921):354–357Google Scholar
  36. Harrison S, Digerfeldt G (1993) European lakes as palaeohydrological and palaeoclimatic indicators. Quatern Sci Rev 12:233–248Google Scholar
  37. Haug GH, Hughen KA, Sigman DM, Peterson LC, Rőhl U (2001) Southward migration of the Intertropical Convergence Zone through the Holocene. Science 293:1305–1307Google Scholar
  38. Hays JD, Imbrie J, Shackleton NJ (1976) Variation in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132Google Scholar
  39. Henrich R, Baumann K-H, Huber R, Meggers H (2002) Carbonate preservation records of the past 3 Myr in the Norwegian-Greenland Sea and the northern North Atlantic: implications for the history of NADW production. Mar Geol 184:17–39Google Scholar
  40. Herbert TD, Schuffert JD, Andreasen D, Heusser L, Lyle M, Mix A, Ravelo AC, Stott LD, Herguera JC (2001) Collapse of the California current during glacial maxima linked to climate change on land. Science 293(5527):71–76Google Scholar
  41. Higginson MJ, Altabet MA, Wincze L, Herbert TD, Murray DW (2004) A solar (irradiance) trigger for millennial–scale abrupt changes in the southwest monsoon? Paleoceanography 19:PA3015. doi:10.1029/2004PA001,031 Google Scholar
  42. Howard WR (1997) A warm future in the past. Nature 388:418–419Google Scholar
  43. Huntley B, Prentice IC (1988) July temperatures in Europe from pollen data, 6000 years before present. Science 241:687–690Google Scholar
  44. Imbrie J, Hays JD, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the Marine del-18O record. In: Berger A, Imbrie J, Hays JD, Kukla G, Saltzman B (eds) Milankovitch and Climate, Part 1. Reidel Publishing Co., Dordrecht, pp 269–305Google Scholar
  45. Imbrie J, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach JE, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1992) On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701–738Google Scholar
  46. Imbrie J, Berger A, Boyle EA, Clemens SC, Duffy A, Howard WR, Kukla G, Kutzbach J, Martinson DG, McIntyre A, Mix AC, Molfino B, Morley JJ, Peterson LC, Pisias NG, Prell WL, Raymo ME, Shackleton NJ, Toggweiler JR (1993) On the structure and origin of major glaciation cycles, 2. The 100,000-year cycle. Paleoceanography 8:699–735Google Scholar
  47. Jain S, Lall U, Mann ME (1999) Seasonality and interannual variations of Northern Hemisphere temperature: equator-to-pole gradient and land-ocean contrast. J Clim 12:1086–1100Google Scholar
  48. Jolly D, Harrison S, Damnati B, Bonnefille R (1998) Simulated climate and biomes of Africa during the late Quaternary: comparison with pollen and lake status data. Quatern Sci Rev 17:629–657Google Scholar
  49. Joussaume S, Taylor KE, Braconnot P, Mitchell JFB, Kutzbach JE, Harrison SP, Prentice IC, Broccoli AJ, Abe-Ouchi A, Bartlein PJ, Bonfils C, Dong B, Guiot J, Herterich K, Hewitt CD, Jolly D, Kim JW, Kislov A, Kitoh A, Moutre MF, Masson V, McAvaney B, McFarlane N, de Noblet N, Peltier WR, Peterschmitt JY, Pollard D, Rind D, Royer JF, Schlesinger ME, Syktus J, Thompson S, Valdes V, Vettoretti G, Webb RS, Wyputta U (1999) Monsoon changes for 5000 years ago: results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys Res Lett 26:859–862. doi:10.1029/1999GL900126 Google Scholar
  50. Karner DB, Muller RA (2000) A causality problem for Milankovitch: Science 288:2143–2144Google Scholar
  51. Kerwin MW, Overpeck JT, Webb RS, DeVernal A, Rind DH, Healy RJ (1999) The role of oceanic forcing in mid-Holocene Northern Hemispheric climatic change. Paleoceanography 14:200–210Google Scholar
  52. Kim J-H, Rimbu N, Lorenz SJ, Lohmann G, Nam S-I, Schouten S, Rühlemann C, Schneider RR (2004) North Pacific and North Atlantic sea-surface temperature variability during the Holocene. Quat Sci Rev 23(20–22):2141–2154Google Scholar
  53. Kleidon A, Fraedrich K, Kunz T, Lunkeit F (2003) The atmospheric circulation and states of maximum entropy production. Geophys Res Lett 30(23):2223Google Scholar
  54. Kukla GJ (2000) The last interglacial. Science 287(5455):987–988Google Scholar
  55. Kutzbach JE, Street-Perrott FA (1985) Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 ka bp. Nature 317:130–134Google Scholar
  56. Kutzbach JE, Liu Z (1997) Response of the African monsoon to orbital forcing and ocean feedbacks in the middle Holocene. Science 278:440–443Google Scholar
  57. Larrasoaña JC, Roberts AP, Rohling EJ, Winklhofer M, Wehausen R (2003) Three million years of monsoon variability over the northern Sahara. Climate Dynamics 21:689–698Google Scholar
  58. Lauritzen SE (1995) High-resolution paleotemperature proxy record for the Last Interglaciation based on Norwegian speleothems. Quatern Res 43:133–146Google Scholar
  59. Lea DW (2001) Ice Ages, the California Current and Devils Hole. Science 293(5527):59–60Google Scholar
  60. Lindzen RS (1994) Climate dynamics and global change. Ann Revue Fluid Mech 26:353–378Google Scholar
  61. Liu ZH, Herbert TD (2004) High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch. Nature 427(6976):720–723Google Scholar
  62. Lourens LJ, Antonarakou A, Hilgen FJ, Van Hoof AAM, Vergnaud-Grazzini C, Zachariasse WJ (1996) Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11(4):391–413Google Scholar
  63. Lourens LJ, Wehausen R, Brumsack HJ (2001) Geological constraints on tidal dissipation and dynamical ellipticity of the Earth over the past three million years. Nature 409:1029–1033Google Scholar
  64. Loutre M-F, Pailard D, Vimeux F, Cortijo E (2004) Does the mean annual insolation have the potential to change the climate? Earth Planet Sci Lett 221:1–14Google Scholar
  65. Lunt DJ, de Noblet-Ducoudre N, Charbit S (2004) Effects of a melted greenland ice sheet on climate, vegetation, and the cryosphere. Climate Dynamics 23(7–8):679–694Google Scholar
  66. Lüthi D, Le Floch M, Bereiter B, Blunier T, Barnola J-M, Siegenthaler U, Raynaud D, Jouzel J, Fischer H, Kawamura K, Stocker TF (2008) High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453:379–382Google Scholar
  67. Marchal O, Cacho I, Stocker T, Grimalt JO, Calvo E, Martrat B, Shackleton N, Vautravers M, Cortijo E, van Kreveld S, Andersson C, Koç N, Chapman M, Sbaffi L, Duplessy J-C, Sarnthein M, Turon J-L, Duprat J, Jansen E (2002) Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene. Quatern Sci Rev 21:455–483Google Scholar
  68. Masson V, Cheddadi R, Braconnot P, Joussaume S, Texier S, PMIP-participating-groups (1999) Mid-Holocene climate in Europe: what can we infer from PMIP model-data comparisons ? Climate Dynamics 15:163–182Google Scholar
  69. Masson-Delmotte V, Jouzel J, Landais A, Stievenard M, Johnsen SJ, White JWC, Werner M, Sveinbjornsdottir A, Fuhrer K (2005) GRIP Deuterium Excess reveals rapid and orbital-scale changes in Greenland Moisture Origin. Science 309(5731):118–121Google Scholar
  70. Milankovitch M (1930) Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen. In: Koeppen W, Geiger R (eds) Handbuch der Klimatologie. Gebrueeder Borntraeger, Berlin, pp 1–176Google Scholar
  71. Mitchell TD, Hulme M, New M (2002) Climate data for political areas. Area 34:109–112 (Dataset reference CRU TS 2.0 available at: http://www.cru.uea.ac.uk/~timm/grid/index.html)Google Scholar
  72. Moritz RE, Bitz CM, Steig EJ (2002) Dynamics of recent change in the Arctic. Science 297(5586):1497–1502Google Scholar
  73. Mulitza S, Ruhlemann C (2000) African Monsoonal precipitation modulated by interhemispheric temperature gradients. Quatern Res 53:270–274Google Scholar
  74. Nesje A, Lie Ø, Olaf Dahl S (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? J Quatern Sci 15(6):587–601Google Scholar
  75. Nesje A, Matthews JA, Olaf Dahl S, Berrisford MS, Andersson C (2001) Holocene glacier fluctuations of Flatebreen and winter-precipitation changes in the Jostedalsbreen region, western Norway, based on glaciolacustrine sediment records. The Holocene 11(3):267–280Google Scholar
  76. Parrenin F, Paillard D (2003) Amplitude and phase of glacial cycles from a conceptual model. Earth Planet Sci Lett 214:243–250Google Scholar
  77. Paillard D (1998) The timing of Pleistocene glaciations from a simple multi-state climate model. Nature 391:378–381Google Scholar
  78. Paillard D (2001) Glacial cycles: toward a new paradigm. Rev Geophy 39(3):325–346Google Scholar
  79. Paltridge GW (1975) Global dynamics and climate change: a system of minimum entropy exchange. Q J Royal Meteorol Soc 101:475–484Google Scholar
  80. Peixoto JP, Oort AH (1992) Physics of climate. American Institute of Physics, New YorkGoogle Scholar
  81. Peltier RW (1994) Ice age paleotopography. Science 265(5169):195–201Google Scholar
  82. Peyron O, Jolly D, Bonnefille R, Vincens A, Guiot J (2000) Climate of East Africa 6000 14C Yr bp as inferred from pollen data. Quatern Res 54:90–101Google Scholar
  83. Pickart RS, Spall MA, Ribergaard MH, Moore GWK, Milliff RF (2003) Deep convection in the. Irminger Sea forced by the Greenland tip jet. Nature 424:152–156Google Scholar
  84. Pierrehumbert RT (2002) The hydrologic cycle in deep-time problems. Nature 419(6903):191–198Google Scholar
  85. Raymo ME, Nisancioglu K (2003) The 41 ka world: Milankovitch’s other unsolved mystery. Paleoceanography 18(1):1011Google Scholar
  86. Reijmer CH, Van Den Broeke MR, Schelle MP (2002) Air parcel trajectories and snowfall related to five deep drilling locations in Antarctica based on the ERA-15 dataset. J Clim 15:1957–1968Google Scholar
  87. Rimbu N, Lohmann G, Kim J-H, Arz HW, Schneider R (2003) Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data. Geophys Res Lett 30(6):1280Google Scholar
  88. Rimbu N, Lohmann G, Lorenz SJ, Kim J-H, Schneider RR (2004) Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean–atmosphere model experiments. Climate Dynamics 23:215–227Google Scholar
  89. Rind D (1998) Latitudinal temperature gradients and climate change. J Geophys Res 103:5943–5971Google Scholar
  90. Rossignol-Strick M, Nesteroff W, Olive P, Vergnaud-Grazzini C (1982) After the deluge: Mediterranean stagnation and sapropel formation. Nature 295:105–110Google Scholar
  91. Rossignol-Strick M, Paterne M, Bassinot FC, Emeis K-C, de Lange GJ (1998) An unusual mid-Pleistocene monsoon period over Africa and Asia. Nature 392:269–272Google Scholar
  92. Rousseau DD, Hatte Ch, Guiot J, Duzer D, Schevin P, Kukla G (2006) Reconstruction of the Grande Pile Eemian using inverse modeling of biomes and δ13C. Quatern Sci Rev 25:2806–2819Google Scholar
  93. Ruddiman WF (2003) Orbital insolation, ice volume, and greenhouse gases. Quatern Sci Rev 22(15):1597–1629Google Scholar
  94. Ruddiman WF (2006) What is the timing of orbital-scale monsoon changes? Quatern Sci Rev 25(7–8):657–658Google Scholar
  95. Ruddiman WF, Mix AC (1993) The North Atlantic and Equatorial Atlantic at 9000 and 6000 yr B.P. In: Wright HE, Kutzbach JE, Webb III T, Ruddiman WF, Street-Perrott FA, Bartlein PJ (eds) Global climates since the last glacial maximum. Holocene vegetation and climates of Europe. University of Minnesota Press, Minnesota, pp 94–124Google Scholar
  96. Sawada M, Viau AE, Vettoretti G, Peltier WR, Gajewski K (2004) Comparison of North-American pollen-based temperature and global lake-status with Ccma AGCM2 output at 6 ka. Quatern Sci Rev 23:225–244Google Scholar
  97. Schrag DP (2000) Climatology: of ice and elephants. Nature 404(6773):23–24Google Scholar
  98. Shackleton NJ (2000) The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science 289:1897–1902Google Scholar
  99. Spötl C, Mangini A, Frank N, Eichstädter R, Burns SJ (2002) Start of the last interglacial period at 135 ka: evidence from a high Alpine speleothem. Geology 30(9):815–818Google Scholar
  100. Thompson DWJ, Wallace JM (1999) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016. Data available from: http://www.atmos.colostate.edu/ao/Data/ao_index.html Google Scholar
  101. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78Google Scholar
  102. Tzedakis C (2003) Timing and duration of last interglacial conditions in Europe: a chronicle of a changing chronology. Quatern Sci Rev 22:763–768Google Scholar
  103. Valdes P (2003) An introduction to climate modelling of the Holocene. In: Mackay A, Battarbee R, Birks J, Oldfield F (eds) Global change in the Holocene. Arnold Publishers, ISBN 0 340 76223 3, pp 20–35Google Scholar
  104. Vimeux F, Masson V, Jouzel J, Stievenard M, Petit JR (1999) Glacial-interglacial changes in ocean surface conditions in the Southern Hemisphere. Nature 398(6726):410–413Google Scholar
  105. Visbeck M (2002) The Ocean’s role in Atlantic climate variability. Science 297(5590):2223–2224Google Scholar
  106. Waelbroeck C, Labeyrie L, Michel E, Duplessy JC, McManus JF, Lambeck K, Balbon E, Labracherie M (2002) Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quatern Sci Rev 21:295–305Google Scholar
  107. Whitfield J (2005) Order out of chaos. Nature 436(7053):905–907Google Scholar
  108. Winograd IJ (2002) The California current, Devils hole, and Pleistocene climate. Science 296:7Google Scholar
  109. Winograd IJ, Coplen TB, Landwehr JM, Riggs AC, Ludwig KR, Szabo BJ, Kolesar PT, Revesz KM (1992) Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 258:255–260Google Scholar
  110. Wolff T, Mulitza S, Rühlemann C, Wefer G (1999) Response of the tropical Atlantic thermocline to late Quaternary trade wind changes. Paleoceanography 14(3):374–383Google Scholar
  111. Young MA, Bradley RS (1984) Insolation gradients and the paleoclimatic record. In: Berger AL et al (eds) Milankovitch and climate Part 2. D. Reidel, Norwell, pp 707–713Google Scholar
  112. Zabel M, Schneider RR, Wagner T, Adegbie AT, de Vries U, Kolonic S (2001) Late Quaternary climate changes in Central Africa as inferred from terreginous input to the Niger Fan. Quatern Res 56:207–217Google Scholar
  113. Zachos J, Pagani M, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693Google Scholar
  114. Zagwijn WH (1996) An analysis of Eemian climate in western and central Europe. Quatern Sci Rev 15:451–469Google Scholar
  115. Zhao Y, Braconnot P, Marti O, Harrison SP, Hewitt C, Kitoh A, Liu Z, Mikolajewicz U, Otto-Bliesner B, Weber SL (2005) A multi-model analysis of role of ocean feedback on the African and Indian monsoon during Mid-Holocene. Clim Dyn 25:777–800. doi:10.1007/s00382-005-0075-7 Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.School of Geography, Politics and SociologyUniversity of NewcastleNewcastle upon TyneUK
  2. 2.ARVE Group, ISTE, EPFLLausanneSwitzerland
  3. 3.CEREGE, Europôle de l’ArboisAix-en-Provence Cedex 04France

Personalised recommendations