Climate Dynamics

, 33:1017 | Cite as

Indian Ocean SST, evaporation, and precipitation during the South Asian summer monsoon in IPCC-AR4 coupled simulations

  • Massimo BollasinaEmail author
  • Sumant Nigam


The veracity of modeled air–sea interactions in the Indian Ocean during the South Asian summer monsoon is examined. Representative simulations of the twentieth century climate, produced by coupled general circulation models as part of the Intergovernmental Panel on Climate Change Fourth Assessment Report, are the analysis targets along with observational data. The analysis shows the presence of large systematic biases in coupled simulations of boreal summer precipitation, evaporation, and sea surface temperature (SST) in the Indian Ocean, often exceeding 50% of the climatological values. Many of the biases are pervasive, being common to most simulations. The representation of air–sea interactions is also compromised. Coupled models tend to emphasize local forcing in the Indian Ocean as reflected by their large precipitation–SST correlations, at odds with the weak links in observations which suggest the importance of non-local controls. The evaporation–SST correlations are also differently represented, indicating atmospheric control on SST in some models and SST control on evaporation in others. The Indian monsoon rainfall–SST links are also misrepresented: the former is essentially uncorrelated with antecedent and contemporaneous Indian Ocean SSTs in nature, but not so in most of the simulations. Overall, coupled models are found deficient in portraying local and non-local air–sea interactions in the Indian Ocean during boreal summer. In our opinion, current models cannot provide durable insights on regional climate feedbacks nor credible projections of regional hydroclimate variability and change, should these involve ocean–atmosphere interactions in the Indian basin.


Coupled models South Asian monsoon Air–sea interactions Precipitation 



The authors acknowledge NOAA and NSF support through CPPA-NA17EC1483 and ATM-0649666 grants.


  1. AchutaRao KM, Sperber KR (2006) ENSO simulation in coupled ocean–atmosphere models: are the current models better? Clim Dyn 27:1–15. doi: 10.1007/s00382-006-0119-7 CrossRefGoogle Scholar
  2. Annamalai H, Murtugudde R (2004) Role of the Indian Ocean in regional climate variability. In earth’s climate: the ocean–atmosphere interaction. Geophys Monograph Series 147:213–246Google Scholar
  3. Annamalai H, Hamilton K, Sperber KR (2007) South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092. doi: 10.1175/JCLI4035.1 CrossRefGoogle Scholar
  4. Chandrasekar A, Kitoh A (1998) Impact of localized sea surface temperature anomalies over the equatorial Indian Ocean on the Indian summer monsoon. J Meteorol Soc Jpn 76:841–853Google Scholar
  5. Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045. doi: 10.1175/JCLI3820.1 CrossRefGoogle Scholar
  6. Clark CO, Cole JE, Webster PJ (2000) Indian Ocean SST and Indian summer rainfall: predictive relationships and their decadal variability. J Clim 13:2503–2519. doi: 10.1175/1520-0442(2000)013<2503:IOSAIS>2.0.CO;2CrossRefGoogle Scholar
  7. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006) The community climate system model: CCSM3. J Clim 19:2122–2143. doi: 10.1175/JCLI3761.1 CrossRefGoogle Scholar
  8. Covey C, AchutaRao KM, Lambert SJ, Taylor KE (2000) Intercomparison of present and future climates simulated by coupled ocean–atmosphere GCMs. PCMDI report no 66. Program for Climate model diagnosis and intercomparison, Lawrence Livermore National Laboratory. University of California, LivermoreGoogle Scholar
  9. Covey C, AchutaRao KM, Cubasch U, Jones P, Lambert SJ, Mann ME, Phillips TJ, Taylor KE (2003) An overview of results from the coupled model intercomparison project (CMIP). Glob Planet Change 37:103–133. doi: 10.1016/S0921-8181(02)00193-5 CrossRefGoogle Scholar
  10. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi: 10.1175/JCLI3884.1 CrossRefGoogle Scholar
  11. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL's CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674. doi: 10.1175/JCLI3629.1 CrossRefGoogle Scholar
  12. Harzallah R, Sadourny R (1997) Observed lead–lag relationships between Indian summer monsoon and some meteorological variables. Clim Dyn 13:635–648. doi: 10.1007/s003820050187 CrossRefGoogle Scholar
  13. Hasumi H, K-1 model developers (2004) K-1 coupled model (MIROC) description, K-1 technical report, 1, Center for climate system research, University of Tokyo, 34 pp. Available at:
  14. Jones C, Gregory J, Thorpe R, Cox P, Murphy J, Sexton D, Valdes H (2004) Systematic optimization and climate simulation of FAMOUS, a fast version of HADCM3. Hadley Centre technical note 60, 33 pp. Available at
  15. Joseph R, Nigam S (2006) ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: realistic representation? J Clim 19:4360–4377. doi: 10.1175/JCLI3846.1 CrossRefGoogle Scholar
  16. Kang IS et al (2002) Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395. doi: 10.1007/s00382-002-0245-9 CrossRefGoogle Scholar
  17. Kang IS, Lee JY, Park CK (2004) Potential predictability of summer mean precipitation in a dynamical seasonal prediction system with systematic error correction. J Clim 17:834–844. doi:10.1175/1520-0442(2004)017<0834:PPOSMP>2.0.CO;2CrossRefGoogle Scholar
  18. Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: Coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90:133–159. doi: 10.1007/s00704-006-0282-0 CrossRefGoogle Scholar
  19. Krishnamurti TN, Bhalme HN (1976) Oscillations of a monsoon system. Part I. Observational aspect. J Atmos Sci 33:1937–1954. doi:10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2CrossRefGoogle Scholar
  20. Kulkarni A, Sabade SS, Kripalani RH (2007) Association between the extreme monsoons and the dipole mode over the Indian subcontinent. Meteorol Atmos Phys 95:255–268. doi: 10.1007/s00703-006-0204-9 CrossRefGoogle Scholar
  21. Lau KM, Kim MK, Kim KM (2006) Aerosol induced anomalies in the Asian summer monsoon—the role of the Tibetan Plateau. Clim Dyn 26:855–864. doi: 10.1007/s00382-006-0114-z CrossRefGoogle Scholar
  22. Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525. doi: 10.1175/JCLI4272.1 CrossRefGoogle Scholar
  23. Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Metab Soc 86:89–93. doi: 10.1175/BAMS-86-1-89 CrossRefGoogle Scholar
  24. Meehl GA, Arblaster JM, Lawrence DM, Seth A, Schneider EK, Kirtman BP et al (2006) Monsoon Regimes in the CCSM3. J Clim 19:2482–2495. doi: 10.1175/JCLI3745.1 CrossRefGoogle Scholar
  25. Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim 21:2869–2882. doi: 10.1175/2007JCLI1777.1 CrossRefGoogle Scholar
  26. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi: 10.1126/science.1075159 CrossRefGoogle Scholar
  27. Nigam S, Chan S (2008) On the summertime strengthening of the Northern Hemisphere sea-level pressure anticyclone. J Climate (in press)Google Scholar
  28. Nigam S, Ruiz-Barradas A (2006) Seasonal hydroclimate variability over North America in global and regional reanalyses and AMIP simulations: varied representation. J Clim 19:815–837. doi: 10.1175/JCLI3635.1 CrossRefGoogle Scholar
  29. Parthasarathy B, Munot AA, Kothawale DR (1995) All India monthly and seasonal rainfall series: 1871–1993. Theor Appl Climatol 49:217–224. doi: 10.1007/BF00867461 CrossRefGoogle Scholar
  30. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J et al (2007) Climate Models and Their Evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 996Google Scholar
  31. Rao KG, Goswami BN (1988) Interannual variations in sea surface temperature of the Arabian sea and the Indian monsoon: a new perspective. Mon Weather Rev 116:558–568. doi:10.1175/1520-0493(1988)116<0558:IVOSST>2.0.CO;2CrossRefGoogle Scholar
  32. Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211. doi: 10.1175/1520-0442(2001)014<3192:SAASM>2.0.CO;2CrossRefGoogle Scholar
  33. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: Model description. Report No. 349. Max Planck Institute for Meteorology, Hamburg, Germany, 127 pp, ISSN 0937-1060Google Scholar
  34. Uppala SM et al (2005) The ERA40 reanalysis. Q J R Metab Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  35. Waliser D, Seo KW, Schubert S, Njoku E (2007) Global water cycle agreement in the climate models assessed in the IPCC AR4. Geophys Res Lett 34:L16705. doi: 10.1029/2007GL030675 CrossRefGoogle Scholar
  36. Wang B, Kang IS, Li JY (2004) Ensemble simulation of Asian–Australian monsoon variability by 11 AGCMs. J Clim 17:803–818. doi:10.1175/1520-0442(2004)017<0803:ESOAMV>2.0.CO;2CrossRefGoogle Scholar
  37. Wu R, Kirtman BP (2005) Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Clim Dyn 25:155–170. doi: 10.1007/s00382-005-0003-x CrossRefGoogle Scholar
  38. Wu R, Kirtman BP (2007) Regimes of seasonal air–sea interaction and implications for performance of forced simulations. Clim Dyn 29:393–410. doi: 10.1007/s00382-007-0246-9 CrossRefGoogle Scholar
  39. Wu R, Kirtman BP, Pegion K (2006) Local air-sea relationship in observations and model simulations. J Clim 19:4914–4932. doi: 10.1175/JCLI3904.1 CrossRefGoogle Scholar
  40. Wu R, Kirtman BP, Pegion K (2007) Surface latent heat flux and its relationship with sea surface temperature in the National Centers for Environmental Prediction Climate Forecast System simulations and retrospective forecasts. Geophys Res Lett 34:L17712. doi: 10.1029/2007GL030751 CrossRefGoogle Scholar
  41. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi:10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2CrossRefGoogle Scholar
  42. Yu L, Jin X, Weller RA (2008) Multidecade Global Flux Datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. Woods Hole Oceanographic Institution, OAFlux project technical report. OA-2008-01, Woods Hole, Massachusetts, 64 ppGoogle Scholar
  43. Zhu Y, Houghton DD (1996) The impact of Indian Ocean SST on the large-scale Asian summer monsoon and the hydrological cycle. Int J Climatol 16:617–632. doi:10.1002/(SICI)1097-0088(199606)16:6<617::AID-JOC32>3.0.CO;2-ICrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations