Climate Dynamics

, 33:1099 | Cite as

Simulations of 20th and 21st century Arctic cloud amount in the global climate models assessed in the IPCC AR4

  • Steve Vavrus
  • Duane Waliser
  • Axel Schweiger
  • Jennifer Francis


Simulations of late 20th and 21st century Arctic cloud amount from 20 global climate models (GCMs) in the Coupled Model Intercomparison Project phase 3 (CMIP3) dataset are synthesized and assessed. Under recent climatic conditions, GCMs realistically simulate the spatial distribution of Arctic clouds, the magnitude of cloudiness during the warmest seasons (summer–autumn), and the prevalence of low clouds as the predominant type. The greatest intermodel spread and most pronounced model error of excessive cloudiness coincides with the coldest seasons (winter–spring) and locations (perennial ice pack, Greenland, and the Canadian Archipelago). Under greenhouse forcing (SRES A1B emissions scenario) the Arctic is expected to become cloudier, especially during autumn and over sea ice, in tandem with cloud decreases in middle latitudes. Projected cloud changes for the late 21st century depend strongly on the simulated modern (late 20th century) annual cycle of Arctic cloud amount: GCMs that correctly simulate more clouds during summer than winter at present also tend to simulate more clouds in the future. The simulated Arctic cloud changes display a tripole structure aloft, with largest increases concentrated at low levels (below 700 hPa) and high levels (above 400 hPa) but little change in the middle troposphere. The changes in cloud radiative forcing suggest that the cloud changes are a positive feedback annually but negative during summer. Of potential explanations for the simulated Arctic cloud response, local evaporation is the leading candidate based on its high correlation with the cloud changes. The polar cloud changes are also significantly correlated with model resolution: GCMs with higher spatial resolution tend to produce larger future cloud increases.


Arctic clouds Climate change GCM CMIP3 



This work was supported by National Science Foundation awards OPP-0327664, ARC-0628910, DE-FG02-06ER64297 (Small Grant for Exploratory Research) jointly funded by DOE and NSF as part of the DOE Office of Science SciDAC-2 initiative. The second author was supported by the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration. Acknowledgment is also given to the modeling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP3 multi-model dataset. Support of this dataset is provided by the Office of Science, U.S. Department of Energy. The assistance of John Dyreby in the processing of the CMIP3 output was essential for completing this study.


  1. ACIA (2005) Arctic climate impact assessment: scientific report. Cambridge University Press, Cambridge, 1042 ppGoogle Scholar
  2. Arctic Climatology Project (2000) Environmental working group arctic meteorology and climate Atlas CD-ROM. In: Fetterer F, Radionov V (eds) National Snow and Ice Data Center, Boulder, COGoogle Scholar
  3. Beesley JA, Moritz RE (1999) Toward an explanation of the annual cycle of cloudiness over the Arctic Ocean. J Clim 12:395–415. doi:10.1175/1520-0442(1999)012<0395:TAEOTA>2.0.CO;2CrossRefGoogle Scholar
  4. Bromwich DH, Tzeng R-Y, Parish TR (1994) Simulation of the modern Arctic climate by the NCAR CCM1. J Clim 7:1050–1069. doi:10.1175/1520-0442(1994)007<1050:SOTMAC>2.0.CO;2CrossRefGoogle Scholar
  5. Chapman WL, Walsh JE (2007) Simulations of Arctic temperature and pressure by global coupled models. J Clim 20:609–632. doi: 10.1175/JCLI4026.1 CrossRefGoogle Scholar
  6. Curry JA, Rossow WB, Randall D, Schramm JL (1996) Overview of Arctic cloud and radiation characteristics. J Clim 9:1731–1764. doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2CrossRefGoogle Scholar
  7. Eisenman I, Untersteiner N, Wettlaufer JS (2007) On the reliability of simulated Arctic sea ice in global climate models. Geophys Res Lett 34:L10501. doi: 10.1029/2007GL029914 CrossRefGoogle Scholar
  8. Francis JA, Hunter E (2006) New insight into the disappearing Arctic sea ice. Eos 87:509–524. doi: 10.1029/2006EO460001 CrossRefGoogle Scholar
  9. Gorodetskaya IV, Tremblay L-B, Liepert B, Cane MA, Cullather RI (2008) The influence of cloud and surface properties on the Arctic Ocean shortwave radiation budget in coupled models. J Clim 21:866–882. doi: 10.1175/2007JCLI1614.1 CrossRefGoogle Scholar
  10. Groves DG, Francis JA (2002) The moisture budget of the Arctic atmosphere from TOVS satellite data. J Geophys Res D19:4391. doi: 10.1029/2001JD001191 CrossRefGoogle Scholar
  11. Hahn CJ, Warren SG (2007) A gridded climatology of clouds over land (1971–1996) and ocean (1954–1997) from surface observations worldwide. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, TN. ORNL/CDIAC-153, NDP-026EGoogle Scholar
  12. Holland MM, Bitz CM (2003) Polar amplification of climate change in the coupled model intercomparison project. Clim Dyn 21:221–232. doi: 10.1007/s00382-003-0332-6 CrossRefGoogle Scholar
  13. Huschke RE (1969) Arctic cloud statistics from ‘air-calibrated’ surface weather observations, Memo. RM-6173-PR, Rand Corp, Santa Monica, CA, 79 ppGoogle Scholar
  14. Inoue J, Liu J, Pinto JO, Curry JA (2006) Intercomparison of Arctic regional climate models: modeling clouds and radiation for SHEBA in May 1998. J Clim 19:4167–4178. doi: 10.1175/JCLI3854.1 CrossRefGoogle Scholar
  15. Intrieri JM, Fairall CW, Shupe MD, Persson POG, Andreas EL, Guest PS, Moritz RM (2002) An annual cycle of Arctic surface cloud forcing at SHEBA. J Geophys Res 107(C10). doi: 10.1029/2000JC000439
  16. IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. WMO/UNEP, Cambridge University Press, Cambridge, 944 ppGoogle Scholar
  17. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. WMO/UNEP, Cambridge University Press, Cambridge, 996 ppGoogle Scholar
  18. Jones C, Wyser K (2004) The Rossby centre regional atmospheric climate model part II: application to the Arctic climate. Ambio 33:211–220. doi: 10.1639/0044-7447(2004)033[0211:TRCRAC]2.0.CO;2 Google Scholar
  19. Kato S, Loeb NG, Minnis P, Francis JA, Charlock TP, Rutan DA, Clothiaux EE, Sun-Mack S (2006) Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set. Geophys Res Lett 33:L19804. doi: 10.1029/2006GL026685 CrossRefGoogle Scholar
  20. Key EL, Minnett PJ, Jones RA (2004) Cloud distributions over the coastal Arctic Ocean: surface-based and satellite observations. Atmos Res 72:57–88. doi: 10.1016/j.atmosres.2004.03.029 CrossRefGoogle Scholar
  21. Kutzbach JE, Williams J, Vavrus S (2005) Simulated 21st century changes in regional water balance of the Great Lakes region and links to changes in global temperature and poleward moisture transport. Geophys Res Lett 32. doi: 10.1029/2005GL023506
  22. Liu Y, Key JR, Francis JA, Wang X (2007) Possible causes of decreasing cloud cover in the Arctic winter, 1982–2000. Geophys Res Lett 34:L14705. doi: 10.1029/2007GL030042 CrossRefGoogle Scholar
  23. Lorenz DJ, DeWeaver ET (2007) The response of the extratropical hydrological cycle to global warming. J Clim 20:3470–3484. doi: 10.1175/JCLI4192.1 CrossRefGoogle Scholar
  24. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  25. Miller JR, Russell GL (2002) Projected impact of climate change on the energy budget of the Arctic Ocean by a global climate model. J Clim 15:3028–3042. doi:10.1175/1520-0442(2002)015<3028:PIOCCO>2.0.CO;2CrossRefGoogle Scholar
  26. Overland JE, Guest PS (1991) The Arctic snow and air temperature budget over sea ice during winter. J Geophys Res 96:4651–4662. doi: 10.1029/90JC02264 CrossRefGoogle Scholar
  27. Ramanathan V, Barkstrom BR, Harrison EF (1989) Climate and the Earth’s radiation budget. Phys Today 42:22–32. doi: 10.1063/1.881167 CrossRefGoogle Scholar
  28. Randall D, Curry J, Battisti D, Flato G, Grumbine R, Hakkinen S, Martinson D, Preller R, Walsh J, Weatherly J (1998) Status of and outlook for large-scale modeling of atmosphere-ice-ocean interactions in the Arctic. Bull Am Metab Soc 79:197–219. doi:10.1175/1520-0477(1998)079<0197:SOAOFL>2.0.CO;2CrossRefGoogle Scholar
  29. Schweiger AJ, Key J (1994) Arctic Ocean radiative fluxes and cloud forcing estimated from the ISCCP C2 cloud data set, 1983–1990. J Appl Meteorol 33:948–963. doi:10.1175/1520-0450(1994)033<0948:AORFAC>2.0.CO;2CrossRefGoogle Scholar
  30. Schweiger AJ, Lindsay RW, Key JR, Francis JA (1999) Arctic clouds in multi-year satellite data sets. Geophys Res Lett 26:1845–1848. doi: 10.1029/1999GL900479 CrossRefGoogle Scholar
  31. Schweiger A (2004) Changes in seasonal cloud cover over the Arctic seas from satellite and surface observations. Geophys Res Lett 31:L12207. doi: 10.1029/2004GL020067 CrossRefGoogle Scholar
  32. Schweiger A, Lindsay R, Vavrus S, Francis J (2008) On the connection between Arctic sea ice and clouds during autumn. J Clim 21:4799–4810CrossRefGoogle Scholar
  33. Sorteberg A, Kattsov V, Walsh JE, Pavlova T (2007) The Arctic surface energy budget as simulated with the IPCC AR4 AOGCMs. Clim Dyn 29:131–156. doi: 10.1007/s00382-006-0222-9 CrossRefGoogle Scholar
  34. Uppala SM et al (2005) The ERA-40 reanalysis. QJR Meteorol Soc 131:2962–3012. doi: 10.1256/qj.04.176
  35. Vavrus S (2004) The impact of cloud feedbacks on Arctic climate under greenhouse forcing. J Clim 17:603–615. doi:10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2CrossRefGoogle Scholar
  36. Vavrus S (2006) An alternative method to calculate cloud radiative forcing: Implications for quantifying cloud feedbacks. Geophys Res Lett 33:L01805. doi: 10.1029/2005GL024723 CrossRefGoogle Scholar
  37. Vavrus S, Waliser D (2008) An improved parameterization for simulating Arctic cloud amount in the CCSM3 climate model. J Clim 21:5673–5687CrossRefGoogle Scholar
  38. Waliser DE, Li JF, Woods C, Austin R, Bacmeister J, Chern J, Genio AD, Jiang J, Kuang Z, Meng H, Minnis P, Platnick S, Rossow WB, Stephens G, Sun-Mack S, Tao WK, Tompkins A, Walker C, Vane D (2008) Cloud Ice: a climate model challenge with sgns and expectations of progress. J Geophys Res CloudSat Spec Sect (accepted)Google Scholar
  39. Walsh JE, Chapman WL (1998) Arctic cloud-radiation-temperature associations in observational data and atmospheric reanalyses. J Clim 11:3030–3045. doi:10.1175/1520-0442(1998)011<3030:ACRTAI>2.0.CO;2CrossRefGoogle Scholar
  40. Walsh JE, Kattsov VM, Chapman WL, Govorkova V, Pavlova T (2002) Comparison of Arctic climate simulations by coupled and uncoupled models. J Clim 15:1429–1446. doi:10.1175/1520-0442(2002)015<1429:COACSB>2.0.CO;2CrossRefGoogle Scholar
  41. Walsh JE, Vavrus SJ, Chapman WL (2005) Summary of a workshop on modeling of the Arctic atmosphere. Bull Am Meteorol Soc 86:845–852. doi: 10.1175/BAMS-86-6-845 CrossRefGoogle Scholar
  42. Wang X, Key JR (2003) Recent trends in Arctic surface, cloud, and radiation properties from space. Science 299:1725–1728. doi: 10.1126/science.1078065 CrossRefGoogle Scholar
  43. Wang X, Key JR (2005) Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: spatial and temporal characteristics. J Clim 18:2558–2574. doi: 10.1175/JCLI3438.1 CrossRefGoogle Scholar
  44. Wetherald RT, Manabe S (1986) An investigation of cloud cover change in response to thermal forcing. Clim Change 8:5–24. doi: 10.1007/BF00158967 CrossRefGoogle Scholar
  45. Wetherald RT, Manabe S (1988) Cloud feedback processes in a general circulation model. J Atmos Sci 45:1397–1415. doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2CrossRefGoogle Scholar
  46. Wilson CA, Mitchell JFB (1987) A doubled CO2 climate sensitivity experiment with a GCM including a simple ocean. J Geophys Res 92:13315–13343. doi: 10.1029/JD092iD11p13315 CrossRefGoogle Scholar
  47. Xu K-M, Randall DA (1996) A semiempirical cloudiness parameterization for use in climate models. J Atmos Sci 53:3084–3102. doi:10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2CrossRefGoogle Scholar
  48. Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi: 10.1029/2005GL023684 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Steve Vavrus
    • 1
  • Duane Waliser
    • 2
  • Axel Schweiger
    • 3
  • Jennifer Francis
    • 4
  1. 1.Center for Climatic ResearchUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Water and Carbon Cycles GroupJet Propulsion Laboratory, MS 183-501PasadenaUSA
  3. 3.Polar Science CenterUniversity of WashingtonSeattleUSA
  4. 4.J. J. Howard Marine LaboratoryRutgers UniversityHighlandsUSA

Personalised recommendations