Climate Dynamics

, Volume 33, Issue 2–3, pp 177–186 | Cite as

The influence of prescribed soil type distribution on the representation of present climate in a regional climate model

  • Ivonne Anders
  • Burkhardt Rockel


Two model simulations with the regional climate model CLM performed with different prescribed soil type distributions are analysed to investigate consistent dry and warm biases during summer in south-eastern Europe evident in a variety of regional climate models. The conventional soil type distribution defines sandy loam in the southeast of Europe; whereas the modified one defines a large area of silt loam instead. As a consequence of the different soil characteristics, the results indicate increased soil moisture in the modified simulation compared to the control simulation. In addition to local changes in near surface parameters, large-scale changes involving temperature, precipitation and surface pressure are observed. Some corrections of the temperature bias in south-eastern Europe are obtained with the prescription of the different soil type, though significant model biases remain in this region.


Soil moisture Regional climate modelling Summer drying 



We would like to thank Danielle Hoja from German Aerospace Center for help to rectify the atlas map. The simulations have been performed at the German High Performance Computing Centre for Climate- and Earth System Research (DKRZ). Discussions with Jonas Bhend, Sebastian Wagner, Erich Fischer and Kerstin Proemmel were highly appreciated.


  1. Betts AK (2004) Understanding hydrometeorology using global models. Bull Am Meteorol Soc 85(11):1673–1688. doi: 10.1175/BAMS-85-11-1673 CrossRefGoogle Scholar
  2. Betts AK, Ball JH, Beljaars ACM, Miller MJ, Viterbo PA (1996) The land surface–atmosphere interaction: a review based on observational and global modeling perspectives. J Geophys Res 101(D3):7209–7225CrossRefGoogle Scholar
  3. Block A (2007) Unsicherheiten in Oberflächen- und Bodenparametern und ihre Auswirkungen auf die Ergebnisse regionaler Klimasimulationen. PhD Thesis, Brandenburgische Technische Universität CottbusGoogle Scholar
  4. Böhm U, Kücken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term applications. COSMO Newsl 6:225–235Google Scholar
  5. Christensen JH, Machenhauer B, Jones RG, Schär C, Ruti PM, Castro M, Visconti G (1997) Validation of present-day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13(7–8):489–506CrossRefGoogle Scholar
  6. Davies H (1976) A lateral boundary formulation for multi-level prediction models. Quart J Roy Meteor Soc 102:405–418Google Scholar
  7. Dickinson R (1984) Modeling evaporation fior three-dimensional global climate models. In: Hansen J, Takahashi T (eds) Climate processes and climate sensitivity, Geophysical Monograph, vol 29, American Geophysical Union, pp 58–72Google Scholar
  8. Dickinson R, Henderson-Sellers A, Kennedy P, Wilson M (1986) Biosphere–atmosphere transfer scheme (bats) forcing the ncar community climate model. NCAR Technical Note TN275+STR, NCARGoogle Scholar
  9. Doms G, Förstner J, Heise E, Herzog HJ, Raschendorfer M, Schrodin R, Reinhardt T, Vogel G (2002) A description of the nonhydrostatic regional model LM. Part II: physical parametrization. Tech. rep., Deutscher Wetterdienst, OffenbachGoogle Scholar
  10. Driessen P (1986) The water balance of soil. In: Van Keulen H, Wolf J (eds) Modelling of agriculteral production: weather, soils and crops, Poduc, pp 76–116Google Scholar
  11. Eltahir EAB (1998) A soil moisture rainfall feedback mechanism. 1. Theory and observations. Water Resour Res 34(4):765–776CrossRefGoogle Scholar
  12. FAO (1996) The digitized soil map of the World including derived soil properties. Food and Agriculture Organization, RomGoogle Scholar
  13. FAO/UNESCO (1974) Soil map of the World. UNESCOGoogle Scholar
  14. Fennessy MJ, Shukla J (1999) Impact of initial soil wetness on seasonal atmospheric prediction. J Clim 12(11):3167–3180CrossRefGoogle Scholar
  15. Ferranti L, Viterbo P (2006) The european summer of 2003: sensitivity to soil water initial conditions. J Clim 19(15):3659–3680CrossRefGoogle Scholar
  16. Feser F, von Storch H (2005) A spatial two-dimensional discrete filter for limited-area-model evaluation purposes. Mon Weather Rev 133(6):1774–1786CrossRefGoogle Scholar
  17. Findell KL, Eltahir EAB (2003a) Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J Hydrometeor 4(3):552–569CrossRefGoogle Scholar
  18. Findell KL, Eltahir EAB (2003b) Atmospheric controls on soil moisture-boundary layer interactions. Part II: Feedbacks within the continental United States. J Hydrometeor 4(3):570–583CrossRefGoogle Scholar
  19. Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007a) Contribution of land–atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34(6). doi: 10.1029/2006GL029068
  20. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007b) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099 doi: 10.1175/JCLI4288.1 CrossRefGoogle Scholar
  21. Haase D, Fink J, Haase G, Ruske R, Pecsi M, Richter H, Altermann M, Jager KD (2007) Loess in Europe—its spatial distribution based on a European loess map, scale 1:2,500,000. Quat Sci Rev 26(9–10):1301–1312CrossRefGoogle Scholar
  22. Hagemann S, Botzet M, Machenhauer B (2001) The summer drying problem over south-eastern Europe: Sensitivity of the limited area model HIRHAM4 to improvements in physical parameterization and resolution. Phys Chem Earth B 26(5–6):391–396Google Scholar
  23. Hagemann S, Machenhauer B, Jones R, Christensen OB, Déqué M, Jacob D, Vidale PL (2004) Evaluation of water and energy budgets in regional climate models applied over Europe. Clim Dyn 23(5):547–567 doi: 10.1007/s00382-004-0444-7 CrossRefGoogle Scholar
  24. Jacob D, Barring L, Christensen OB, Christensen JH, de Castro M, Déqué M, Giorgi F, Hagemann S, Lenderink G, Rockel B, Sanchez E, Schär C, Seneviratne SI, Somot S, van Ulden A, van den Hurk B (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81:31–52CrossRefGoogle Scholar
  25. Jaeger EB, Anders I, Lüthi D, Rockel B, Schär C, Seneviratne SI (2008) Analysis of era40-driven clm simulations for europe. Meteorol Z 17(4):349–367CrossRefGoogle Scholar
  26. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The ncep/ncar 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  27. Koster RD, Suarez MJ (2001) Soil moisture memory in climate models. J Hydrometeor 2(6):558–570CrossRefGoogle Scholar
  28. Koster RD, Suarez MJ (2003) Impact of land surface initialization on seasonal precipitation and temperature prediction. J Hydrometeor 4(2):408–423CrossRefGoogle Scholar
  29. Koster RD, Dirmeyer PA, Guo ZC, Bonan G, Chan E, Cox P, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson K, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue YK, Yamada T, Team G (2004) Regions of strong coupling between soil moisture and precipitation. Science 305(5687):1138–1140CrossRefGoogle Scholar
  30. Koster RD, Guo ZC, Dirmeyer PA, Bonan G, Chan E, Cox P, Davies H, Gordon CT, Kanae S, Kowalczyk E, Lawrence D, Liu P, Lu CH, Malyshev S, McAvaney B, Mitchell K, Mocko D, Oki T, Oleson KW, Pitman A, Sud YC, Taylor CM, Verseghy D, Vasic R, Xue YK, Yamada T (2006) Glace: the global land–atmosphere coupling experiment. Part I: Overview. J Hydrometeor 7(4):590–610. doi: 10.1175/JHM511.1 CrossRefGoogle Scholar
  31. Machenhauer B, Windelband M, Botzet M, Christensen J, Deque M, Jones R, Ruti P, Visconti G (1998) Validation and analysis of regional present-day climate and climate change simulations over Europe. Report 275, Max-Planck-Institute for MeteorologyGoogle Scholar
  32. Marshall CH, Pielke RA, Steyaert LT, Willard DA (2004) The impact of anthropogenic land-cover change on the florida peninsula sea breezes and warm season sensible weather. Mon Weather Rev 132(1):28–52CrossRefGoogle Scholar
  33. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712CrossRefGoogle Scholar
  34. Moberg A, Jones PD (2004) Regional climate model simulations of daily maximum and minimum near-surface temperatures across Europe compared with observed station data 1961–1990. Clim Dyn 23(7–8):695–715CrossRefGoogle Scholar
  35. Noguer M, Jones R, Murphy J (1998) Sources of systematic errors in the climatology of a regional climate model over Europe. Clim Dyn 14(10):691–712CrossRefGoogle Scholar
  36. Pan ZT, Arritt RW, Gutowski WJ, Takle ES (2001) Soil moisture in a regional climate model: simulation and projection. Geophys Res Lett 28(15):2947–2950CrossRefGoogle Scholar
  37. Pielke RA (2001) Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall. Rev Geophys 39(2):151–177CrossRefGoogle Scholar
  38. Pielke RA, Walko RL, Steyaert LT, Vidale PL, Liston GE, Lyons WA, Chase TN (1999) The influence of anthropogenic landscape changes on weather in south Florida. Mon Weather Rev 127(7):1663–1673CrossRefGoogle Scholar
  39. Räisänen J, Hansson U, Ullerstig A, Doscher R, Graham LP, Jones C, Meier HEM, Samuelsson P, Willen U (2004) European climate in the late twenty-first century: regional simulations with two driving global models and two forcing scenarios. Clim Dyn 22(1):13–31CrossRefGoogle Scholar
  40. Rowell DP, Jones RG (2006) Causes and uncertainty of future summer drying over Europe. Clim Dyn 27(2–3):281–299CrossRefGoogle Scholar
  41. Sánchez E, Gaertner MA, Gallardo C, Padorno E, Arribas A, Castro M (2007) Impacts of a change in vegetation description on simulated European summer present-day and future climates. Clim Dyn 29(2–3):319–332CrossRefGoogle Scholar
  42. Schär C, Lüthi D, Beyerle U, Heise E (1999) The soil-precipitation feedback: area process study with a regional climate model. J Clim 12(3):722–741CrossRefGoogle Scholar
  43. Schrodin R, Heise E (2001) The multi-layer version of the DWD soil model TERRA-LM. COSMO Technical Report 2, Deutscher WetterdienstGoogle Scholar
  44. Seneviratne SI, Koster R, Guo Z, Dirmeyer A, Kowalcyk E, Lawrence D, Liu P, Lu CH, Mocko D, Oleson K, Verseghy D (2006a) Soil moisture memory in AGCM simulations: analysis of global land–atmosphere coupling experiment (GLACE) data. J Hydrometeor 7:1090–1112CrossRefGoogle Scholar
  45. Seneviratne SI, Lüthi D, Litschi M, Schär C (2006b) Land–atmosphere coupling and climate change in europe. Nature 443(7108):205–209. doi: 10.1038/nature05095 CrossRefGoogle Scholar
  46. Stremme H (1937) International soil map of Europe, 1:2500000. Gea Verlag, BerlinGoogle Scholar
  47. Teuling A, Seneviratne SI (2008) Contrasting spectral changes limit albedo impact on land–atmosphere coupling during the 2003 european heat wave. Geophys Res Lett 35:L03401. doi: 10.1029/2007GL032778 CrossRefGoogle Scholar
  48. Vidale PL, Lüthi D, Frei C, Seneviratne SI, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108(D18):4586CrossRefGoogle Scholar
  49. Wu WR, Dickinson RE (2004) Time scales of layered soil moisture memory in the context of land–atmosphere interaction. J Clim 17(14):2752–2764CrossRefGoogle Scholar
  50. Zaitchik BF, Evans JP, Geerken RA, Smith RB (2007) Climate and vegetation in the middle east: interannual variability and drought feedbacks. J Clim 20(15):3924–3941. doi: 10.1175/JCLI4223.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institute for Coastal Research, Regional Atmospheric Modelling GroupGKSS Research CenterGeesthachtGermany

Personalised recommendations