Advertisement

Climate Dynamics

, 33:1069 | Cite as

Dynamical changes in the ENSO system in the last 11,000 years

  • Anastasios A. TsonisEmail author
Article

Abstract

A thorough analysis of a proxy El Nino/Southern Oscillation (ENSO) record indicates that a bifurcation occurred in the ENSO system sometime around 5,000 years b.p. As a result of this bifurcation the attractor became higher dimensional and a new mechanism of instability was introduced. As a consequence of these changes the system switched from a dynamics where the normal condition (La Nina) was dominant to a dynamics characterized by more frequent and stronger El Nino events.

Keywords

ENSO Climate variability Chaos Bifurcation 

Notes

Acknowledgments

I thank the students in my spring 2008 class “nonlinear time series analysis” for helping me with the production of some of the figures used here.

References

  1. Abarbanel HDI, Brown R, Kennel MB (1991) Lyapunov exponents in chaotic systems: their importance and their evaluations using observed data. Mod Phys Lett B 5:1347–1375Google Scholar
  2. Brown R, Bryant P, Abarbanel HDI (1991) Computing the Lyapunov spectrum of a dynamical system from observed time series. Phys Rev A 43:2787–2806. doi: 10.1103/PhysRevA.43.2787 CrossRefGoogle Scholar
  3. Clement AC, Seager R, Cane MA (1998) Suppression of El Nino during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15:731–737. doi: 10.1029/1999PA000466 CrossRefGoogle Scholar
  4. Elsner JB, Tsonis AA (1993) Nonlinear dynamics established in the ENSO. Geophys Res Lett 20:213–216. doi: 10.1029/93GL00046 CrossRefGoogle Scholar
  5. Farmer JD, Sidorowich JJ (1987) Predicting chaotic time series. Phys Rev Lett 59:845–848. doi: 10.1103/PhysRevLett.59.845 CrossRefGoogle Scholar
  6. Frederickson P, Kaplan E, Yorke E, Yorke J (1983) The Lyapunov dimension of strange attractors. J Differ Equ 49:185–192. doi: 10.1016/0022-0396(83)90011-6 CrossRefGoogle Scholar
  7. Grassberger P, Procaccia I (1983a) Characterization of strange attractors. Phys Rev Lett 50:346–349. doi: 10.1103/PhysRevLett.50.346 CrossRefGoogle Scholar
  8. Grassberger P, Procaccia I (1983b) Measuring the strangeness of strange attractors. Physica D 9:189–208. doi: 10.1016/0167-2789(83)90298-1 CrossRefGoogle Scholar
  9. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141. doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2CrossRefGoogle Scholar
  10. Moy CM, Seltzer GO, Rodbell DT, Anderson DM (2002) Variability of El Nino/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420:162–165. doi: 10.1038/nature01194 Google Scholar
  11. Nerenberg MAH, Essex C (1990) Correlation dimension and systematic geometric effects. Phys Rev A 42:7065–7074. doi: 10.1103/PhysRevA.42.7065 CrossRefGoogle Scholar
  12. Osborne AR, Provenzale A (1989) Finite correlation dimension for stochastic systems with power-law spectra. Physica D 35:357–381. doi: 10.1016/0167-2789(89)90075-4 CrossRefGoogle Scholar
  13. Packard NH, Crutchfield JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45:712–716. doi: 10.1103/PhysRevLett.45.712 CrossRefGoogle Scholar
  14. Rodbell DT et al (1999) A 15, 000-year record of El Nino-driven alluviation in southwestern Ecuador. Science 291:516–520. doi: 10.1126/science.283.5401.516 CrossRefGoogle Scholar
  15. Ruelle D (1981) Chemical kinetics and differentiable dynamical systems. In: Pacault A, Vidal C (eds) Nonlinear phenomena in chemical dynamics. Springer-Verlag, Berlin, pp 57–72Google Scholar
  16. Schreiber T, Schmitz A (1996) Improved surrogate data for nonlinearity tests. Phys Rev Lett 77:635–638. doi: 10.1103/PhysRevLett.77.635 CrossRefGoogle Scholar
  17. Sugihara G, May RM (1990) Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344:734–741. doi: 10.1038/344734a0 CrossRefGoogle Scholar
  18. Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young LS (eds) Dynamical systems and turbulence, lecture notes in mathematics, vol 898. Springer-Verlag, Berlin, pp 366–381Google Scholar
  19. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time series: the method of surrogate data. Physica D 58:77–94. doi: 10.1016/0167-2789(92)90102-S CrossRefGoogle Scholar
  20. Tsonis AA (1992) Chaos: from theory to applications. Plenum, NYGoogle Scholar
  21. Tsonis AA, Elsner JB (1992) Nonlinear prediction as a way of distinguishing chaos from random fractal sequences. Nature 358:217–220. doi: 10.1038/358217a0 CrossRefGoogle Scholar
  22. Tsonis AA, Elsner JB, Georgakakos KP (1993) Estimating the dimension of weather and climate attractors: Important issues about the procedure and interpretation. J Atmos Sci 50:2549–2555. doi:10.1175/1520-0469(1993)050<2549:ETDOWA>2.0.CO;2CrossRefGoogle Scholar
  23. Tsonis AA, Triantafyllou GN, Elsner JB (1994) Searching for determinism in observed data: a review of the issues involved. Nonlinear Process Geophys 1:12–25Google Scholar
  24. Tsonis AA, Elsner JB (1995) Testing for scaling in natural forms and observables. J Stat Phys 81:869–880. doi: 10.1007/BF02179296 CrossRefGoogle Scholar
  25. Tsonis AA, Elsner JB (1996) Global temperature as a regulator of climate predictability. Physica D 108:191–196. doi: 10.1016/S0167-2789(97)82013-1 CrossRefGoogle Scholar
  26. Tsonis AA (2007) Reconstructing dynamics from observables: the issue of the delay parameter revisited. Int J Bifurcat Chaos 17:4229–4243. doi: 10.1142/S0218127407019913 CrossRefGoogle Scholar
  27. Tsonis AA, Swanson KL (2008) Topology and predictability of El Nino and La Nina network. Phys Rev Lett 100: 228502Google Scholar
  28. Tziperman E, Stone L, Cane MA, Jarosh H (1994) El Nino chaos: overlapping resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science 264:72–74. doi: 10.1126/science.264.5155.72 CrossRefGoogle Scholar
  29. Wales DJ (1991) Calculating the rate of loss of information from chaotic time series by forecasting. Nature 350:485–488. doi: 10.1038/350485a0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Mathematical Sciences, Atmospheric Sciences GroupUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations