Climate Dynamics

, Volume 33, Issue 5, pp 615–627

The CLIVAR C20C project: skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role?

  • F. Kucharski
  • A. A. Scaife
  • J. H. Yoo
  • C. K. Folland
  • J. Kinter
  • J. Knight
  • D. Fereday
  • A. M. Fischer
  • E. K. Jin
  • J. Kröger
  • N.-C. Lau
  • T. Nakaegawa
  • M. J. Nath
  • P. Pegion
  • E. Rozanov
  • S. Schubert
  • P. V. Sporyshev
  • J. Syktus
  • A. Voldoire
  • J. H. Yoon
  • N. Zeng
  • T. Zhou
Article

Abstract

The ability of atmospheric general circulation models (AGCMs), that are forced with observed sea surface temperatures (SSTs), to simulate the Indian monsoon rainfall (IMR) variability on interannual to decadal timescales is analyzed in a multimodel intercomparison. The multimodel ensemble has been performed within the CLIVAR International “Climate of the 20th Century” (C20C) Project. This paper is part of a C20C intercomparison of key climate time series. Whereas on the interannual timescale there is modest skill in reproducing the observed IMR variability, on decadal timescale the skill is much larger. It is shown that the decadal IMR variability is largely forced, most likely by tropical sea surface temperatures (SSTs), but as well by extratropical and especially Atlantic Multidecadal Oscillation (AMO) related SSTs. In particular there has been a decrease from the late 1950s to the 1990s that corresponds to a general warming of tropical SSTs. Using a selection of control integrations from the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3), it is shown that the increase of greenhouse gases (GHG) in the twentieth century has not significantly contributed to the observed decadal IMR variability.

Keywords

Climate variability Multimodel ensembles Indian monsoon ENSO–monsoon relation Interannual-to-decadal predictability 

References

  1. Annamalai H, Hamilton H, Sperber KR (2007) The South Asian Summer Monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092CrossRefGoogle Scholar
  2. Bracco A, Kucharski F, Molteni F, Hazeleger W, Severijns C (2007) A recipe for simulating the interannual variability of the Asian Summer Monsoon and its relation with ENSO. Clim Dyn 28:441–460. doi:10.1007/s00382-006-0190-0 CrossRefGoogle Scholar
  3. Copsey D, Sutton R, Knight JR (2006) Recent trends in the sea level pressure in the Indian Ocean region. Geophys Res Lett 33:L19712. doi:10.1029/2006GL027175 CrossRefGoogle Scholar
  4. Doherty RM, Hulme M, Jones CG (1999) A gridded reconstruction of land and ocean precipitation for the extended tropics from 1974–1994. Int J Climatol 19:119–142CrossRefGoogle Scholar
  5. Folland CK, Shukla J, Kinter J, Rodwell MJ (2002) The climate of the twentieth century project. CLIVAR Exchanges 7(2):37–39Google Scholar
  6. Goswami BN, Madhusoodanan MS, Neema CP, Sengupta D (2006) A physical mechanism for North Atlantic SST influence on the Indian summer monsoon. Geophys Res Lett 33:L02706. doi:10.1029/2005GL024803 CrossRefGoogle Scholar
  7. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA, Nicholls N, Penner JE, Stott PA (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  8. Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part I: Assessing determinism. Clim Dyn 23(3–4):371–389Google Scholar
  9. Ju J, Slingo JM (1995) The Asian Summer Monsoon and ENSO. Quart J Roy Meteor Soc 121:1133–1168CrossRefGoogle Scholar
  10. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453. doi:10.1038/nature06921
  11. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:1029/2005GL024233 CrossRefGoogle Scholar
  12. Krishnan R, Sugi M (2003) Pacific decadal oscillation and variability of the Indian summer monsoon rainfall. Clim Dyn 21:233–242CrossRefGoogle Scholar
  13. Krishna Kumar K, Hoerling M, Rajagopalan B (2005) Advancing dynamical prediction of Indian monsoon rainfall. Geophys Res Lett 32:L08704. doi:10.1029/2004GL021979 CrossRefGoogle Scholar
  14. Krishnamurthy V, Goswami BN (2000) Indian Monsoon–ENSO relationship on interdecadal timescale. J Clim 13:579–595CrossRefGoogle Scholar
  15. Kucharski F, Molteni F, Yoo JH (2006) SST forcing of decadal Indian Monsoon rainfall variability. Geophys Res Lett 33: L03709. doi:10.10029/2005GL025371 CrossRefGoogle Scholar
  16. Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian Monsoon–ENSO relationship and the Tropical Atlantic: the “Weakening” of the 1980s and 1990s. J Clim 20:4255–4266CrossRefGoogle Scholar
  17. Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706. doi:10.10029/2007GL033037 CrossRefGoogle Scholar
  18. Li S, Perlwitz J, Quan X, Hoerling MP (2008) Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys Res Lett 35:L05804. doi:10.1029/2007GL032901 CrossRefGoogle Scholar
  19. Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal variability and the climate change background. J Geoph Res 112:D18115. doi:10.1029/2007JD008411 CrossRefGoogle Scholar
  20. Parthasarathy B, Munot AA, Kothawale DR (1995) Monthly and seasonal rainfall series for All-India homogeneous regions and meteorological subdivisions: 1871–1994. Contributions from Indian Institute of Tropical Meteorology, Research Report RR-065, August 1995, PuneGoogle Scholar
  21. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice, and night marine air temperature since the late nineteenth century. J Geoph Res 108(D14):4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  22. Scaife AA, Kucharski F, Folland CK, Kinter J, Fereday D, Fischer A, Grainger S, Jin K, Knight JR, Kusunoki S, Nath MJ, Nakaegawa T, Pegion P, Schubert S, Sporyshev P, Syktus J, Voldaire A, Yoon JH, Zhou T (2008) The CLIVAR C20C project: selected 20th century climate events. Climate Dyn (submitted)Google Scholar
  23. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192CrossRefGoogle Scholar
  24. Wang B, Ding Q, FuX, Kang I-S, Jin K, Shukla J, Doblas-Reyes F (2005) Fundamental challenge in simulation and prediction of summer monsoon rainfall. Geophys Res Lett 32. doi:10.1029/2005GL022734
  25. Wang B, Yang J, Zhou T, Wang B (2008) Interdecadal changes in the major modes of Asian-Australian Monsoon variability: strenghening relationship with ENSO since the Late 1970s. J Clim 21:1771–1789CrossRefGoogle Scholar
  26. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Quart J Roy Meteor Soc 118:877–926CrossRefGoogle Scholar
  27. Wu R, Kirtman BP (2005) Roles of Indian and Pacific Ocean air–sea coupling in tropical atmospheric variability. Clim Dyn 25:155–170CrossRefGoogle Scholar
  28. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17712. doi:10.1029/2006GL026267 CrossRefGoogle Scholar
  29. Zhou T, Yu R (2006) Twentieth century surface air temperature over China and the globe simulated by coupled climate models. J Clim 19:5843–5858CrossRefGoogle Scholar
  30. Zhou T, Wu B, Scaife AA, Li L, Fischer A, Voldaire A, Wang B, Folland CK, Fereday D, Kucharski F, Kinter J, Jin KE, Nath MJ, Lau N-C, Pegion P, Kusunoki S, Nakaegawa T, Syktus J (2008) The CLIVAR C20C Project: Which components of the Asian-Australian Monsoon variability are forced and reproducible? Climate Dyn (submitted)Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • F. Kucharski
    • 1
  • A. A. Scaife
    • 2
  • J. H. Yoo
    • 1
  • C. K. Folland
    • 2
  • J. Kinter
    • 3
  • J. Knight
    • 2
  • D. Fereday
    • 2
  • A. M. Fischer
    • 4
  • E. K. Jin
    • 3
    • 5
  • J. Kröger
    • 1
  • N.-C. Lau
    • 6
  • T. Nakaegawa
    • 7
  • M. J. Nath
    • 6
  • P. Pegion
    • 8
  • E. Rozanov
    • 9
  • S. Schubert
    • 8
  • P. V. Sporyshev
    • 10
  • J. Syktus
    • 11
  • A. Voldoire
    • 12
  • J. H. Yoon
    • 13
  • N. Zeng
    • 13
  • T. Zhou
    • 14
  1. 1.Earth System Physics SectionThe Abdus Salam International Centre for Theoretical PhysicsTriesteItaly
  2. 2.Met Office Hadley Centre (MOHC)ExeterUK
  3. 3.Centre for Ocean-Land-Atmosphere StudiesCalvertonUSA
  4. 4.Institute for Atmospheric and Climate ScienceETH ZurichSwitzerland
  5. 5.George Mason UniversityFairfaxUSA
  6. 6.Geophysical Fluid Dynamics LaboratoryPrincetonUSA
  7. 7.Meteorological Research InstituteJapan Meteorological AgencyTokyoJapan
  8. 8.NASA Goddard Space Flight CentreGreenbeltUSA
  9. 9.Physical-Meteorological Observatory/World Radiation CenterDavosSwitzerland
  10. 10.Voeikov Main Geophysical ObservatorySt PetersburgRussia
  11. 11.Queensland Climate Change Centre of ExcellenceBrisbaneAustralia
  12. 12.CNRM/GAME, Meteo-France/CNRSToulouseFrance
  13. 13.University of MarylandCollegeparkUSA
  14. 14.Institute of Atmospheric SciencesLASGBeijingChina

Personalised recommendations