Advertisement

Climate Dynamics

, Volume 33, Issue 2–3, pp 433–444 | Cite as

Multi-decadal scale variability in autumn-winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris

  • Louise E. Cullen
  • Pauline F. Grierson
Article

Abstract

We present the first tree-ring based reconstruction of rainfall for the Lake Tay region of southern Western Australia. We examined the response of Callitris columellaris to rainfall, the southern oscillation index (SOI), the southern annular mode (SAM) and surface sea temperature (SST) anomalies in the southern Indian Ocean. The 350-year chronology was most strongly correlated with rainfall averaged over the autumn-winter period (March–September; r = −0.70, < 0.05) and SOI values averaged over June–August (r = 0.25, < 0.05). The chronology was not correlated with SAM or SSTs. We reconstructed autumn-winter rainfall back to 1655, where current and previous year tree-ring indices explained 54% of variation in rainfall over the 1902–2005 calibration period. Some variability in rainfall was lost during the reconstruction: variability of actual rainfall (expressed as normalized values) over the calibration period was 0.78, while variability of the normalized reconstructed values over the same period was 0.44. Nevertheless, the reconstruction, combined with spectral analysis, revealed that rainfall naturally varies from relatively dry periods lasting to 20–30 years to 15-year long periods of above average rainfall. This variability in rainfall may reflect low-frequency variation in the El Niño-Southern Oscillation rather than the effect of SAM or SSTs.

Keywords

Cupresseaceae Dendroclimatology Semiarid Australia El Niño southern oscillation 

Notes

Acknowledgments

This work was supported by the Hermon Slade Foundation. Thank-you to Mathias Boer, Tim Langlois and two referees for their helpful comments that substantially improved our manuscript.

References

  1. Allan R, Lindesay J, Parker D (1996) El Niño southern oscillation and climatic variability. CSIRO, MelbourneGoogle Scholar
  2. Ansell TJ, Reason CJC, Smith IN, Keay K (2000) Evidence for decadal variability in southern Australian rainfall and relationships with regional pressure and sea surface temperatures. Int J Climatol 20:1113–1129. doi:10.1002/1097-0088(200008)20:10<1113::AID-JOC531>3.0.CO;2-NCrossRefGoogle Scholar
  3. Ash J (1983) Tree rings in tropical Callitris macleayana F. Muell Aust J Bot 31:277–281. doi: 10.1071/BT9830277 CrossRefGoogle Scholar
  4. Baker PJ, Palmer JG, D’Arrigo RD (2008) The dendrochronology of Callitris intratropica in northern Australia: annual ring structure, chronology development and climate correlations. Aust J Bot 56:311–320. doi: 10.1071/BT08040 CrossRefGoogle Scholar
  5. Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311. doi: 10.1016/j.cageo.2003.11.004 CrossRefGoogle Scholar
  6. Briffa KR (1984) Tree-climate relationships and dendroclimatological reconstruction in the British Isles. PhD thesis, University of East AngliaGoogle Scholar
  7. Buckley BM, R.J.S. W, Kelly PE, Larson DW, Cook ER (2004) Inferred summer precipitation for southern Ontario back to AD 610, as reconstructed from ring widths of Thuja occidentalis. Can J Res 34:2541–2553. doi: 10.1139/x04-129
  8. Bureau of Meteorology (2001) Australia’s global climate observing system. Bureau of Meteorology, MelbourneGoogle Scholar
  9. Cai W, Shi G, Li Y (2005) Multidecadal fluctuations of winter rainfall over southwest Western Australia simulated in the CSIRO mark 3 coupled model. Geophys Res Lett 32:L12701. doi: 10.1029/2005GL022712 CrossRefGoogle Scholar
  10. Cai WJ, Whetton PH, Karoly DJ (2003) The response of the Antarctic oscillation to increasing and stabilized atmopsheric CO2. J Clim 16:1525–1538Google Scholar
  11. Case RA, MacDonald GM (1995) A dendroclimatic reconstruction of annual precipitation on the Western Canadian Prairies since A.D. 1505 from Pinus flexilis James. Quat Res 44:267–275. doi: 10.1006/qres.1995.1071 CrossRefGoogle Scholar
  12. Cook ER (1985) A time series approach to tree ring standardization. PhD thesis, University of ArizonaGoogle Scholar
  13. Cook ER, Briffa K (1990) Data analysis. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. International Institute for Applied Systems Analysis, Netherlands, pp 97–162Google Scholar
  14. Cook ER, Briffa K, Jones PD (1994) Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int J Climatol 14:379–402. doi: 10.1002/joc.3370140404 CrossRefGoogle Scholar
  15. Cook ER, Krusic PJ (2006) ARSTAN40c. tree-ring laboratory, Lamont-Doherty earth observatory, New York. Available from http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html
  16. Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370. doi: 10.1177/095968369700700314 CrossRefGoogle Scholar
  17. CSIRO (2001) Climate change: projections for Australia. CSIRO Climate Impact Group, AspendaleGoogle Scholar
  18. Cullen LE, Grierson PF (2006) Is cellulose extraction necessary for developing stable carbon and oxygen isotope chronologies from Callitris glaucophylla?. Palaeogeogr Palaeoclimatol Palaeoecol 236:206–216. doi: 10.1016/j.palaeo.2005.11.003 CrossRefGoogle Scholar
  19. Cullen LE, Grierson PF (2007) A stable oxygen, but not carbon, isotope chronology of Callitris columellaris reflects recent climate change in north-western Australia. Clim Change 85:213–229. doi: 10.1007/s10584-006-9206-3 CrossRefGoogle Scholar
  20. Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38:159–179Google Scholar
  21. Farjon A (2005) A monograph of Cupressaceae and Sciadopitys. Royal Botanic Gardens, KewGoogle Scholar
  22. Frederiksen JS, Frederiksen C (2005) Decadal changes in Southern Hemisphere winter cyclogenesis. CSIRO Marine and Atmospheric Research, AspendaleGoogle Scholar
  23. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  24. Fritts HC, Guiot J, Gordon GA, Schweingruber F (1990) Methods of calibration, verification, and reconstruction. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. International Institute for Applied Systems Analysis, Netherlands, pp 163–217Google Scholar
  25. González-Elizondo M, Jurado E, Návar J, Gonzálex-Elizondo MS, Villanueva J, Aguirre O, Jiménez J (2005) Tree-rings and climate relationships for Douglas-fir chronologies from the Sierra Madre Occidental, Mexico: a 1681–2001 rain reconstruction. For Ecol Manage 213:39–53CrossRefGoogle Scholar
  26. Gordon HB, Rotstayn LD, McGregor JL et al (2002) The CSIRO Mk3 climate system model. CSIRO Division of Atmospheric Research, AspendaleGoogle Scholar
  27. Graham NE, Hughes MK, Ammann CM et al (2007) Tropical Pacific—mid-latitude teleconnections in medieval times. Clim Change 83:241–285. doi: 10.1007/s10584-007-9239-2 CrossRefGoogle Scholar
  28. Graumlich LJ (1991) Subalpine tree growth, climate, and increasing CO2: an assessment of recent growth trends. Ecol 72:1–11. doi: 10.2307/1938895 CrossRefGoogle Scholar
  29. Hennessy KJ, Suppiah R, Page CM (1999) Australian rainfall changes, 1910–1999. Aust Meteorol Mag 48:1–13Google Scholar
  30. Holmes R (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  31. IOCI (2002) Climate variability and change in south west Western Australia. Indian Ocean Climate Initiative Panel, PerthGoogle Scholar
  32. IOCI (2005) Indian Ocean climate initiative stage 2: report of phase 1 activity. Indian Ocean Climate Initiative Panel, PerthGoogle Scholar
  33. Jiang N, Neelin JD, Ghil M (1995) Quasi-quadriennial and quasi-biennial variability in the equatorial Pacific. Clim Dyn 12:101–112. doi: 10.1007/BF00223723 CrossRefGoogle Scholar
  34. Jones PD, Briffa KR, Barnett TP, Tett SFB (1998) High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with general circulation model control-run temperatures. Holocene 8:455–471. doi: 10.1191/095968398667194956 CrossRefGoogle Scholar
  35. Knapp PA, Soulé PT, Grissino-Mayer HD (2001) Detecting potential regional effects of increased atmospheric CO2 on growth rates of western juniper. Glob Chang Biol 7:903–917. doi: 10.1046/j.1365-2486.2001.00452.x CrossRefGoogle Scholar
  36. Kushner PJ, Held IM, Delworth TL (2001) Southern Hemisphere atmospheric circulation response to global warming. J Clim 14:2238–2249. doi:10.1175/1520-0442(2001)014<0001:SHACRT>2.0.CO;2CrossRefGoogle Scholar
  37. LaMarche VC, Holmes R, Dunwiddie PW, Drew LG (1979) Tree-ring chronologies of the Southern Hemisphere 4. Australia. Laboratory of tree-ring research, University of ArizonaGoogle Scholar
  38. Lange RT (1965) Growth ring characteristics in an arid zone conifer. Trans R Soc S Aust 89:133–137Google Scholar
  39. Lawrence DM, Grissino-Mayer HD (2001) Verify for windows. Available from http://fuzzo.com/science/verify.htm
  40. Li Y, Cai W, Campbell EP (2005) Statistical modeling of extreme rainfall in southwest Western Australia. J Clim 18:852–863. doi: 10.1175/JCLI-3296.1 CrossRefGoogle Scholar
  41. Lough JM (2007) Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography 22. doi: 10.1029/2006PA001377
  42. MacDonald GM, Sziecz JM, Claricoates J, Dale KA (1998) Response of the Central Canadian treeline to recent climatic changes. Ann Assoc Am Geogr 88:183–208. doi: 10.1111/1467-8306.00090 CrossRefGoogle Scholar
  43. Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445. doi: 10.1007/BF00142586 CrossRefGoogle Scholar
  44. Marshall GJ (2003) Trends in the southern annular mode from observations and reanalyses. J Clim 16:4134–4143CrossRefGoogle Scholar
  45. New M, Todd M, Hulme M, Jones P (2001) Precipitation measurements and trends in the twentieth century. Int J Climatol 21:1889–1922. doi: 10.1002/joc.680 CrossRefGoogle Scholar
  46. Nicholls N, Lavery B (1992) Australian rainfall trends during the twentieth century. Int J Climatol 12:153–163. doi: 10.1002/joc.3370120204 CrossRefGoogle Scholar
  47. Nicholls N, Lavery B, Frederiksen C, Drosdowsky W (1996) Recent apparent changes in relationships between the El Nino—southern oscillation and Australian rainfall and temperature. Geophys Res Lett 23:3357–3360. doi: 10.1029/96GL03166 CrossRefGoogle Scholar
  48. Osborn TJ, Briffa K, Jones PD (1997) Adjusting variance for sample size in tree-ring chronologies and other regional mean timeseries. Dendrochron 15:89–99Google Scholar
  49. Perlinski JE (1986) The dendrochronology of Callitris columellaris F. Muell. in arid, sub-tropical continental Western Australia. M.A. thesis, University of Western AustraliaGoogle Scholar
  50. Pittock B (2003) Climate change: an Australian guide to the science and potential impacts. Australian Greenhouse Office, CanberraGoogle Scholar
  51. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324. doi: 10.1007/s003820050284 CrossRefGoogle Scholar
  52. Rodionov SN (2006) Use of prewhitening in climate regime shift detection. Geophys Res Lett 33:L12707. doi: 10.1029/2006GL025904 CrossRefGoogle Scholar
  53. Ropelewski CF, Jones PD (1987) An extension of the Tahiti–Darwin southern oscillation index. Mon Weather Rev 115:2161–2165. doi:10.1175/1520-0493(1987)115<2161:AEOTTS>2.0.CO;2CrossRefGoogle Scholar
  54. Samuel JM, Verdon DC, Sivapalan M, Franks SW (2006) Influence of Indian Ocean sea surface temperature variability on southwest Western Australian winter rainfall. Water Res Bull 42:W08402 doi:  10.1029/2005WR004672
  55. Sarris D, Christodoulakis D, Korner C (2007) Recent decline in precipitation and tree growth in the eastern Mediterranean. Glob Chang Biol 13:1187–1200. doi: 10.1111/j.1365-2486.2007.01348.x CrossRefGoogle Scholar
  56. Seager R, Graham N, Herweijer C, Gordon AL, Kushnir Y, Cook E (2007) Blueprints for medieval hydroclimate. Quat Sci Rev 26:2322–2336. doi: 10.1016/j.quascirev.2007.04.020 CrossRefGoogle Scholar
  57. Smith IN (2004) An assessment of recent trends in Australian rainfall. Aust Metab Mag 53:163–173Google Scholar
  58. Smith IN, McIntosh PD, Ansell TJ, Reason CJC, McInnes K (2000) Southwest Western Australia winter rainfall and its association with Indian Ocean climate variability. Int J Climatol 20:1913–1930. doi:10.1002/1097-0088(200012)20:15<1913::AID-JOC594>3.0.CO;2-JCrossRefGoogle Scholar
  59. Solomon S, Qin D, Manning M et al (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  60. Stahle DW, Cleaveland MK (1994) Tree-ring reconstructed rainfall over the southeastern USA during the medieval warm period and little ice age. Clim Change 26:199–212. doi: 10.1007/BF01092414 CrossRefGoogle Scholar
  61. Thomson DJ (1982) Spectrum estimation and harmonic analysis. IEEE Proc 70:1055–1096. doi: 10.1109/PROC.1982.12433 CrossRefGoogle Scholar
  62. Treble PC, Chappell J, Gagan MK, McKeegan KD, Harrison TM (2005) In situ measurements of seasonal δ 18O variations and analysis of isotopic trends in a modern speleothem from southwest Australia. Earth Planet Sci Lett 233:17–32. doi: 10.1016/j.epsl.2005.02.013 CrossRefGoogle Scholar
  63. Treble PC, Shelley JMG, Chappell J (2003) Comparison of high resolution sub-annual records of trace elements in a modern (1911–1992) speleothem with instrumental climate data from southwest Australia. Earth Planet Sci Lett 216:141–153. doi: 10.1016/S0012-821X(03)00504-1 CrossRefGoogle Scholar
  64. Treydte KS, Schleser GH, Helle G, Frank DC, Winiger M, Haug GH et al (2006) The twentieth century was the wettest period in northern Pakistan over the past millennium. Nature 440:1179–1182. doi: 10.1038/nature04743 CrossRefGoogle Scholar
  65. Watson E, Luckman BH (2001) Dendroclimatic reconstruction of precipitation for sites in the southern Canadian Rockies. Holocene 11:203–213. doi: 10.1191/095968301672475828 CrossRefGoogle Scholar
  66. Watson E, Luckman BH (2004) Tree-ring based reconstructions of precipitation for the southern Canadian Cordillera. Clim Change 65:209–241. doi: 10.1023/B:CLIM.0000037487.83308.02 CrossRefGoogle Scholar
  67. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with application in dendroclimatology and hydrometeorolgy. J Clim Appl Meteorol 23:201–213. doi:10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Ecosystems Research Group, School of Plant Biology M090University of Western AustraliaCrawleyAustralia

Personalised recommendations