Advertisement

Climate Dynamics

, Volume 33, Issue 5, pp 603–614 | Cite as

The CLIVAR C20C project: selected twentieth century climate events

  • A. A. ScaifeEmail author
  • F. Kucharski
  • C. K. Folland
  • J. Kinter
  • S. Brönnimann
  • D. Fereday
  • A. M. Fischer
  • S. Grainger
  • E. K. Jin
  • I. S. Kang
  • J. R. Knight
  • S. Kusunoki
  • N. C. Lau
  • M. J. Nath
  • T. Nakaegawa
  • P. Pegion
  • S. Schubert
  • P. Sporyshev
  • J. Syktus
  • J. H. Yoon
  • N. Zeng
  • T. Zhou
Article

Abstract

We use a simple methodology to test whether a set of atmospheric climate models with prescribed radiative forcings and ocean surface conditions can reproduce twentieth century climate variability. Globally, rapid land surface warming since the 1970s is reproduced by some models but others warm too slowly. In the tropics, air-sea coupling allows models to reproduce the Southern Oscillation but its strength varies between models. We find a strong relationship between the Southern Oscillation in global temperature and the rate of global warming, which could in principle be used to identify models with realistic climate sensitivity. This relationship and a weak response to ENSO suggests weak sensitivity to changes in sea surface temperature in some of the models used here. In the tropics, most models reproduce part of the observed Sahel drought. In the extratropics, models do not reproduce the observed increase in the North Atlantic Oscillation in response to forcings, through internal variability, or as a combination of both.

Keywords

CLIVAR Climate of the twentieth century project Climate sensitivity Southern Oscillation Sahel rainfall North Atlantic Oscillation Atmospheric models Model evaluation Regional climate 

Notes

Acknowledgments

This work contributes to the CLIVAR Climate of the twentieth Century project: http://www.iges.org/c20c/home.html and was carried out with support from the UK Met Office’s Hadley Centre climate research program: joint Defra and MoD Programme, (Defra) GA01101 (MoD) CBC/2B/0417 Annex C5. We thank Dr J. Murphy for useful comments and Drs B. Booth, M. Collins and G. Harris for coupled ocean atmosphere data from the Hadley Centre model and Dr D. Rowell for the Sahel rainfall data. J. Kinter and K. Jin were supported by research grants from NSF (0332910), NOAA (NA04OAR4310034) and NASA (NNG04GG46G). P.Sporyshev was supported by the Russian Foundation for Basic Research. S. Grainger was supported by the Australian Climate Change Science Program of the Australian Greenhouse Office. The development and maintenance of CCM SOCOL was funded by ETH Zurich grant PP-1/04-1.

References

  1. Alexander MA, Bladé I, Newman M, Lanzante J, Lau N-C, Scott J (2002) The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J Climate 15:2205–2231CrossRefGoogle Scholar
  2. Bacmeister JT, Pegion PJ, Schubert SD, Suarez MJ (2000) An atlas of seasonal means simulated by the NSIPP 1 atmospheric GCM. NASA Tech. Memo. 104606, Vol. 17, 194 pp. Available from Goddard Space Flight Center, Greenbelt, MD 20771Google Scholar
  3. Bader J, Latif M (2005) North Atlantic response to anomalous Indian Ocean SST in a coupled GCM. J Clim 18:5382–5389CrossRefGoogle Scholar
  4. Biasutti M, Giannini A (2006) Robust Sahel drying in reponse to late 20th century forcings. Geophys Res Lett 33:L11706CrossRefGoogle Scholar
  5. Bretherton CS and Battisti DS (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27:767–770CrossRefGoogle Scholar
  6. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850. J Geophys Res 111:D12106., doi: 10.1029/2005JD006548 CrossRefGoogle Scholar
  7. Bronnimann S (2007) The impact of El Nino/Southen Oscillation on European climate. Rev Geophys 45:RG3003CrossRefGoogle Scholar
  8. Cash BA, Rodó X, Kinter JL III (2008) Links between tropical Pacific SST and cholera incidence in Bangladesh: role of the eastern and central tropical Pacific. J Climate (in press)Google Scholar
  9. Cohen J, Frei A, Rosen RD (2005) The role of boundary conditions in AMIP-II simulations of the NAO. J Clim 18:973–981CrossRefGoogle Scholar
  10. Colman R, Deschamps L, Naughton M, Rikus L, Sulaiman A, Puri K, Roff G, Sun Z, Embery G (2005) BMRC Atmospheric Model (BAM) version 3.0: comparison with mean climatology. BMRC Research Report 108, 56ppGoogle Scholar
  11. Delworth TL (2006) GFDL’s CM2 Global Coupled Climate Models. Part 1: Formulation and simulation characteristics. J Clim 19(5):643–674CrossRefGoogle Scholar
  12. Dong B, Sutton RT, Scaife AA (2006) Multidecadal Modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Let 33:L08705CrossRefGoogle Scholar
  13. Egorova T, Rozanov E, Zubov V, Manzini E, Schmutz W, Peter T (2005) Chemistry-climate model SOCOL: a validation of the present-day climatology. Atmos Chem Phys 5:1557–1576Google Scholar
  14. Folland CK, Parker DE, Palmer TN (1986) Sahel rainfall and worldwide sea surface temperature 1901–85. Nature 320:602–607CrossRefGoogle Scholar
  15. Folland CK, Shukla J, Kinter J, Rodwell MJ (2002) The climate of the twentieth century project. CLIVAR Exchanges 7(2):37–39Google Scholar
  16. Frankignoul C, Hasselmann K (1977) Stochastic climate models. Part II: Application to sea-surface temperature anomalies and thermocline variability. Tellus 29:289–305Google Scholar
  17. Giannini A, Saravanan R, Chang P (2003) Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302:1027–1030CrossRefGoogle Scholar
  18. Gordon HB, Rotstayn LD, McGregor JL, Dix MR, Kowalczyk AE, O’Farrell SP, Waterman AC, Hirst AC, Wilson MA, Collier IG, Watterson IG, Elliot TI (2002) The CSIRO Mk3 Climate System Model. Technical 60. CSIRO, MelbourneGoogle Scholar
  19. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origins for recent North Atlantic Climate Change. Science 292: 90–92CrossRefGoogle Scholar
  20. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips AS (2004) Twentieth century North Atlantic climate change. Part II: Understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405CrossRefGoogle Scholar
  21. Huffman J et al. (1997) The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull Am Met Soc 78:5–20CrossRefGoogle Scholar
  22. Hulme M (1994) Validation of large-scale precipitation fields in General Circulation Models. In: Debois M, Desalmand F (eds) Global Precipitation and Climate Change. NATO ASI series, vol 126. Springer, Heidelberg, pp 387–405Google Scholar
  23. Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth centuty North Atlantic climate change. Part I: Assessing determinism. Clim Dyn 23(3–4):371–389Google Scholar
  24. Jones GS, Stott PA, Christidis N (2007) Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J Geophys Res (accepted)Google Scholar
  25. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal oscillation. Geophys Res Lett 33:L17706CrossRefGoogle Scholar
  26. Knutti R, Meehl GA, Allen MR, Stainforth DA (2006) Constraining climate sensitivity from the seasonal cycle in surface temperarture. J Clim 19:4224–4233CrossRefGoogle Scholar
  27. Kucharski F et al (2008) The CLIVAR C20C Project: Skill of simulating Indian monsoon rainfall on interannual to decadal timescales. Does GHG forcing play a role? Clim Dyn (in preparation)Google Scholar
  28. Kucharski F, Molteni F, Bracco A (2006) Decadal interactions between the Western Tropical Pacific and the North Atlantic Oscillation. Clim Dyn 26:79–91. doi: 10.1007/s00382-005-0085-5 CrossRefGoogle Scholar
  29. Lau N-C, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20CrossRefGoogle Scholar
  30. Lee M-I, Kang I-S, Kim J-K, Mapes BE (2001) Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model. J Geophys Rev 106:14219–14233CrossRefGoogle Scholar
  31. Lee M-I, Kang I-S, Kim J-K, Mapes BE (2003) Impacts of cumulus convection parametrization on aqua-planet AGCM simulations of tropical intraseasonal variability. J Meteor Soc Jap 81:963–992CrossRefGoogle Scholar
  32. Lorenz EN (1963) Deterministic nonperiodic flow. J Atm Sci 20:130–141CrossRefGoogle Scholar
  33. Maloney ED, Chelton D (2006) An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models. J Clim 19:2743–2762CrossRefGoogle Scholar
  34. Mehta VM, Suarez MJ, Manganello JV, Delworth TL (2000) Oceanic influence on the North Atlantic Oscillation and associated northern hemisphere climate vaiations:1959–1993. Geophys Res Lett 27:121–124CrossRefGoogle Scholar
  35. Minobe S, Kuwano-Yoshida A, Komori N, Xie S-P, Small RJ (2008) Influence of the gulf stream on the troposphere. Nature 452:206–210CrossRefGoogle Scholar
  36. Murphy JM, Booth BBB, Collins M, Harris GR, Sexton DMH, Webb MJ (2007) A methodology for probabilistic predictions of regional climate change from perturbed physics ensembles. Phil Trans Roy Soc A 365: 1993–2028CrossRefGoogle Scholar
  37. Nakamura M, Enomoto T, Yamane S (2005) A simulation study of the 2003 heatwave in Europe. J Earth Sim 2:55–69Google Scholar
  38. Namias J (1964) Seasonal persistence and recurrence of European blocking during 1958–60. Tellus XVI:394–407Google Scholar
  39. Palmer TN, Sun Z (1985) A modelling and observational study of the relationship between sea surface temperature in the north-west Atlantic and the atmospheric general circulation. Quart J Roy Met Soc 111: 947–975CrossRefGoogle Scholar
  40. Pope VD, Gallani ML, Rowntree PR, Stratton RA, (2000) The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3. Clin Dyn 16:123–146CrossRefGoogle Scholar
  41. Ratcliffe RAS, Murray R (1970) New lag associations between North Atlantic sea temperatures and European pressure, applied to long range weather forecasting. Quart J Roy Met Soc 96:226–246CrossRefGoogle Scholar
  42. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice, and night marine air temperature since the late nineteenth century. J Geoph Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  43. Rodwell MJ, Folland CK (2002) Atlantic air–sea interaction and seasonal predictability. Q J R Met Soc 128:1413–1443CrossRefGoogle Scholar
  44. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the winter North Atlantic Oscillation and European climate. Nature 398: 320–323CrossRefGoogle Scholar
  45. Rodwell MJ, Drevillon M, gnoul C, Hurrell JW, Pohlmann H, Stendel M, Sutton RT (2004) North Atlantic forcing of climate. Quart J R Meteorol Soc 130:2013–2032CrossRefGoogle Scholar
  46. Rowell DP (2003) The impact of Mediterranean SSTs on the Sahelian rainfall season. J Clim 16:849–862CrossRefGoogle Scholar
  47. Rowell DP, Folland CK, Maskell K, Ward MN (1945) Variability of summer rainfall over tropical north Africa (1906–92): Observations and modelling. Q J R Meterol Soc 121:669–704Google Scholar
  48. Saha S, Nadiga S, Thiaw C, Wang J, Wang W, Zhang Q, Van den Dool HM, Pan HL, Moorthi S, Bebringer D, Stokes D, Pena M, Lord S, White G, Ebisuzaki W, Peng P, Xie P (2006) The NCEP climate forecast system. J Clim 19:3483–3517CrossRefGoogle Scholar
  49. Scaife AA, Knight JR, Vallis GK, Folland CK (2005) A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys Res Lett 32:L18715CrossRefGoogle Scholar
  50. Schneider EK, Bengtsson L, Hu Z-Z (2003) Forcing of Northern Hemisphere climate trends. J Atm Sci 60:1504–1521CrossRefGoogle Scholar
  51. Schraner M, Rozanov E, Schnadt C, Kenzelmann P, Fischer AM, Zubov V, Luo BP, Hoyle C, Füglistaler S, Egorova T, Brönnimann S, Peter T (2008) Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/micro-physics schemes. Atmos Chem Phys 8:11103–11147CrossRefGoogle Scholar
  52. Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) On the cause of the 1930s Dust Bowl. Science 303:1855CrossRefGoogle Scholar
  53. Sexton DMH, Rowell DP, Folland CK, Karoly DJ (2001) Detection of anthropogenic climate change using an atmospheric GCM. Clim Dyn 7:669–685CrossRefGoogle Scholar
  54. Shibata K, Yoshimura H, Ohizumi M, Hosaka M, Sugi M (1999) A simulation of troposhpere, stratosphere and mesosphere with an MRI/JMA98 GCM. Papers Meteorl Geophys 50:15–53CrossRefGoogle Scholar
  55. Shneerov B.Ye., Meleshko VP, Matyugin VA, Sporyshev PV, Pavlova TV, Vavulin SV, Shkol’nik IM Zubov VA, Gavrilina VM, Govorkova VA (2001) The up-to-date version of the MGO global model of general circulation of the atmosphere (version MGO-2). MGO Proceedings, No.550, pp 3–43Google Scholar
  56. Shukla J, DelSole T, Fennessy M, Kinter J, Paolino D (2006) Climate model fidelity and projections of climate change. Geophys Res Lett 33:L07702. doi: 10.1029/2005GL025579 CrossRefGoogle Scholar
  57. Solomon S, Qin D, Manning M, Marquis M, Averyt K, Tignor MMB, Miller HL, Chen Z (eds) (2007) Climate change 2007: the physical science basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 589–662Google Scholar
  58. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf H-F (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111:D07107CrossRefGoogle Scholar
  59. Stott PA, Kettleborough JA (2002) Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature 416: 723–726CrossRefGoogle Scholar
  60. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circulation. Part II. Trends J Clim 13:1018–1036Google Scholar
  61. Toniazzo T, Scaife AA (2006) The influence of ENSO on winter North Atlantic climate. Geophys Res Lett 33:L2704CrossRefGoogle Scholar
  62. Trenberth KE, Caron JM, Stepanial DP, Worley S (2002) Evolution of El Nino-Southern Oscillation and global atmospheric surface temperatures. J Geophys Res 107. doi: 10.1029/2000JD000298
  63. Wang B, Wan H, Ji Z Z, Zhang X, Yu R C, Yu Y Q, Liu H L (2004) Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci China (Ser A) 47:4–21CrossRefGoogle Scholar
  64. Zeng N, Neelin JD, Lau K-M, Tucker CJ (1999) Enhancement of interdecadal climate variability in the Sahel by vegetation interaction. Science 286: 1537–1540CrossRefGoogle Scholar
  65. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33:L17702CrossRefGoogle Scholar
  66. Zhou T et al (2008) The CLIVAR C20C Project: Which components of the Asian-Australian monsoon variability are forced and reproducible? Clim Dyn (in preparation)Google Scholar

Copyright information

© UK government  2008

Authors and Affiliations

  • A. A. Scaife
    • 1
    Email author
  • F. Kucharski
    • 2
  • C. K. Folland
    • 1
  • J. Kinter
    • 3
  • S. Brönnimann
    • 4
  • D. Fereday
    • 1
  • A. M. Fischer
    • 4
  • S. Grainger
    • 5
  • E. K. Jin
    • 3
  • I. S. Kang
    • 6
  • J. R. Knight
    • 1
  • S. Kusunoki
    • 7
  • N. C. Lau
    • 8
  • M. J. Nath
    • 8
  • T. Nakaegawa
    • 7
  • P. Pegion
    • 9
  • S. Schubert
    • 9
  • P. Sporyshev
    • 10
  • J. Syktus
    • 11
  • J. H. Yoon
    • 12
  • N. Zeng
    • 12
  • T. Zhou
    • 13
  1. 1.Hadley Centre, Met OfficeExeterUK
  2. 2.The Abdus Salam International Centre for Theoretical PhysicsEarth System Physics SectionTriesteItaly
  3. 3.Centre for Ocean-Land-Atmosphere studies and George Mason UniversityFairfaxUSA
  4. 4.Institute for Atmospheric and Climate ScienceETHZurichSwitzerland
  5. 5.Centre for Australian Weather and Climate ResearchMelbourneAustralia
  6. 6.School of Earth Environmental SciencesSeoul National UniversitySeoulSouth Korea
  7. 7.Meteorological Research InstituteJapan Meteorological AgencyTokyoJapan
  8. 8.Geophysical Fluid Dynamics LaboratoryPrincetonUSA
  9. 9.NASA Goddard Space Flight CentreGreenbeltUSA
  10. 10.Voeikov Main Geophysical ObservatorySt. PetersburgRussia
  11. 11.Queensland Climate Change Centre of ExcellenceQueenslandAustralia
  12. 12.University of MarylandBaltimoreUSA
  13. 13.LASG, Institute of Atmospheric SciencesBeijingChina

Personalised recommendations