Climate Dynamics

, Volume 32, Issue 2–3, pp 333–342 | Cite as

Oceanic influences on recent continental warming

  • Gilbert P. CompoEmail author
  • Prashant D. Sardeshmukh


Evidence is presented that the recent worldwide land warming has occurred largely in response to a worldwide warming of the oceans rather than as a direct response to increasing greenhouse gases (GHGs) over land. Atmospheric model simulations of the last half-century with prescribed observed ocean temperature changes, but without prescribed GHG changes, account for most of the land warming. The oceanic influence has occurred through hydrodynamic-radiative teleconnections, primarily by moistening and warming the air over land and increasing the downward longwave radiation at the surface. The oceans may themselves have warmed from a combination of natural and anthropogenic influences.


Radiative Forcings Constant Relative Humidity Oceanic Influence Radiative Perturbation Surface Temperature Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the following colleagues and observational and modeling centers for providing data and model output: P. Brohan, P. Jones, the UK Met Office Hadley Center, and the University of East Anglia Climatic Research Unit for HadCRUT3v; N. Rayner and the UK Met Office Hadley Center for HadISST1.1; J. Hansen and NASA GISS for GISTEMP; T. Smith and NOAA/NCDC for MLASST; D. Dewitt and the IRI for ECHAM4.5 and ECHAM5 data; S. Schubert, P. Pegion, and NASA/GMAO for NSIPP data; M. Alexander, C. Deser, A. Phillips, G. Meehl, and the CCSM Climate Variability Working Group for CAM3 data; J. Kinter and the Center for Ocean–Land–Atmosphere Studies for COLA data; and N.C. Lau, J. Ploshay, and NOAA/GFDL for AM2 data. We thank M. Wallace for thoughtful comments. We also thank two reviewers and the editor E. Schneider for suggestions which improved an earlier version of this manuscript. This work was supported by the NOAA Climate Program Office.


  1. Anderson JL et al (2004) The new GFDL global atmosphere and land model AM2-LM2: evaluation with prescribed SST simulations. J Clim 17:4641–4673. doi :10.1175/1520-0442(2004)017<4089:IOALMO>2.0.CO;2CrossRefGoogle Scholar
  2. Barsugli JJ, Sardeshmukh PD (2002) Global atmospheric sensitivity to tropical SST anomalies throughout the Indo-Pacific basin. J Clim 15:3427–3442. doi :10.1175/1520-0442(2002)015<3427:GASTTS>2.0.CO;2CrossRefGoogle Scholar
  3. Barsugli JJ, Shin S-I, Sardeshmukh PD (2006) Sensitivity of global warming to the pattern of tropical ocean warming. Clim Dyn 27:483–492. doi: 10.1007/s00382-006-0143-7 CrossRefGoogle Scholar
  4. Bony S, Dufresne J-L, Le Treut H, Morcrette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86. doi: 10.1007/s00382-003-0369-6 CrossRefGoogle Scholar
  5. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J Geophys Res 111:D12106. doi: 10.1029/2005JD00654
  6. Cash BA, Schneider EK, Bengtsson L (2005) Origin of regional climate differences: role of boundary conditions and model formulation in two GCMs. Clim Dyn 25:709–723. doi: 10.1007/s00382-005-0069-5 CrossRefGoogle Scholar
  7. DelSole T (2006) Low-frequency variations of surface temperature in observations and simulations. J Clim 19:4487–4507. doi: 10.1175/JCLI3879.1 CrossRefGoogle Scholar
  8. Deser C, Phillips AS (2006) Simulation of the 1976/77 climate transition over the North Pacific: Sensitivity to tropical forcing. J Clim 19:6170–6180. doi: 10.1175/JCLI3963.1 CrossRefGoogle Scholar
  9. Deser C, Phillips AS (2008) Atmospheric circulation trends, 1950–2000: The relative roles of oceanic and atmospheric radiative forcing. J Clim (in press).Google Scholar
  10. Dai A (2006) Recent climatology, variability, and trends in global surface humidity. J Clim 19:3589–3606. doi: 10.1175/JCLI3816.1 CrossRefGoogle Scholar
  11. Folland CK, Shukla J, Kinter J, Rodwell MJ (2002) C20C: The climate of the twentieth century project. CLIVAR Exchanges 7(2):37–39 (Available from the International CLIVAR Project Office, Southampton Oceanography Centre, Empress Dock, Southampton, SO14 3ZH, UK,
  12. Hansen JE, Ruedy R, Sato M, Imhoff M, Lawrence W, Easterling D et al (2001) A closer look at United States and global surface temperature change. J Geophys Res 106:23947–23963. doi: 10.1029/2001JD000354 CrossRefGoogle Scholar
  13. Hegerl GC, Zwiers FW, Braconnot P, Gillett NP, Luo Y, Marengo Orsini JA et al (2007) Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The physical science basis Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 665–745Google Scholar
  14. Held IM, Soden BJ (2000) Water vapor feedback and global warming. Annu Rev Energy Environ 25:441–475. doi: 10.1146/ CrossRefGoogle Scholar
  15. Hoerling M, Kumar A (2003) The perfect ocean for drought. Science 299:691–694. doi: 10.1126/science.1079053
  16. Horel JD, Wallace JM (1981) Planetary-scale phenomena associated with the Southern Oscillation. Mon Weather Rev 109:813–829. doi :10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2CrossRefGoogle Scholar
  17. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Johnson CA et al (eds) (2001) Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, New York, pp 881Google Scholar
  18. Hurrell JW, Hoerling MP, Philips AS, Xu T (2004) Twentieth century north atlantic climate change. Part I: assessing determinism. Clim Dyn 23:371–389. doi: 10.1007/s00382-004-0432-y CrossRefGoogle Scholar
  19. Hurrell JW, Hack JJ, Phillips AS, Caron J, Yin J (2006) The dynamical simulation of the community atmosphere model version 3 (CAM3). J Clim 19:2162–2183CrossRefGoogle Scholar
  20. Johns TC et al (2003) Anthropogenic climate change for 1860 to 2100 simulated with HadCM3 model under updated emissions scenarios. Clim Dyn 20:583–612Google Scholar
  21. Jones PD, Osborn TJ, Briffa KR (1997) Estimating sampling errors in large-scale temperature averages. J Clim 10:2548–2568. doi :10.1175/1520-0442(1997)010<2548:ESEILS>2.0.CO;2CrossRefGoogle Scholar
  22. Kinter JL, Fennessy MJ, Krishnamurthy V, Marx L (2004) An evaluation of the apparent interdecadal shift in the tropical divergent circulation in the NCEP-NCAR reanalysis. J Clim 17:349–361. doi :10.1175/1520-0442(2004)017<0349:AEOTAI>2.0.CO;2CrossRefGoogle Scholar
  23. Knutson TR, Delworth TL, Dixon KW, Held IM, Lu J, Ramaswamy V et al (2006) Assessment of Twentieth-century regional surface temperature trends using the GFDL CM2 Coupled Models. J Clim 19:1624–1651. doi: 10.1175/JCLI3709.1 CrossRefGoogle Scholar
  24. Lau NC (1997) Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull Am Metab Soc 78:21–33. doi :10.1175/1520-0477(1997)078<0021:IBGSAA>2.0.CO;2CrossRefGoogle Scholar
  25. Meehl GA, Washington WM, Ammann CM, Arblaster JM, Wigley TML, Tebaldi C (2004) Combinations of natural and anthropogenic forcings in twentieth-century climate. J Clim 17:3721–3727. doi :10.1175/1520-0442(2004)017<3721:CONAAF>2.0.CO;2CrossRefGoogle Scholar
  26. Meehl GA et al (2006) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19:2597–2616. doi: 10.1175/JCLI3746.1 CrossRefGoogle Scholar
  27. Miyakoda K, Hembree GD, Strickler RF, Shulman I (1972) Cumulative results of extended forecast experiments I: model performance for winter cases. Mon Weather Rev 100:836–855. doi :10.1175/1520-0493(1972)100<0836:CROEFE>2.3.CO;2CrossRefGoogle Scholar
  28. Newman ME (2007) Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Clim 20:2333–2356. doi: 10.1175/JCLI4165.1 CrossRefGoogle Scholar
  29. Newman ME, Sardeshmukh PD, Penland C (2008) How important is air-sea coupling in ENSO and MJO evolution? Submitted to J Clim. Manuscript available at
  30. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024. doi :10.1175/1520-0442(1995)008<1999:TOGOTS>2.0.CO;2CrossRefGoogle Scholar
  31. Pierce DW, Barnett TP, AchutaRao KM, Glecker PJ, Gregory JM, Washington WM (2006) Anthropogenic warming of the oceans: observations and model results. J Clim 19:1873–1900. doi: 10.1175/JCLI3723.1 CrossRefGoogle Scholar
  32. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperatures since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670
  33. Roeckner E et al (1996) The atmospheric general circulation model ECHAM4: model description and simulation of present-day climate. Max-Planck Institut fur Meteorologie Rep. 218. Hamburg, Germany, p 90Google Scholar
  34. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 Atmosphere Model. J Clim 19:3771–3791. doi: 10.1175/JCLI3824.1 CrossRefGoogle Scholar
  35. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398:320–323. doi: 10.1038/18648 CrossRefGoogle Scholar
  36. Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45:1228–1251. doi :10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2CrossRefGoogle Scholar
  37. Sardeshmukh PD, Compo GP, Penland C (2000) Changes of probability associated with El Niño. J Clim 13:4268–4286. doi :10.1175/1520-0442(2000)013<4268:COPAWE>2.0.CO;2CrossRefGoogle Scholar
  38. Schneider EK, Kirtman BP, Lindzen RS (1999) Tropospheric water vapor and climate sensitivity. J Atmos Sci 56:1649–1658. doi :10.1175/1520-0469(1999)056<1649:TWVACS>2.0.CO;2CrossRefGoogle Scholar
  39. Schneider EK, Bengtsson L, Hu Z-Z (2003) Forcing of northern hemisphere climate trends. J Atmos Sci 60:1504–1521. doi :10.1175/1520-0469(2003)060<1504:FONHCT>2.0.CO;2CrossRefGoogle Scholar
  40. Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004a) Causes of long-term drought in the U.S. Great Plains. J Clim 17:485-503. doi :10.1175/1520-0442(2004)017<0485:COLDIT>2.0.CO;2Google Scholar
  41. Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004b) On the cause of the 1930 s Dust Bowl. Science 303:1855–1859. doi: 10.1126/science.1095048
  42. Seager R, Kushnir Y, Herweijer C, Naik N, Velez J (2005) Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim 18:4065–4088. doi: 10.1175/JCLI3522.1 CrossRefGoogle Scholar
  43. Sexton DMH, Grubb H, Shine KP, Folland CK (2003) Design and analysis of climate model experiments for the efficient estimation of anthropogenic signals. J Clim 16:1320–1336Google Scholar
  44. Shin S-I, Sardeshmukh PD, Webb RS, Oglesby RJ, Barsugli JJ (2006) Understanding the Mid-Holocene Climate. J Clim 19:2801–2817. doi: 10.1175/JCLI3733.1 CrossRefGoogle Scholar
  45. Shukla J et al (2000) Dynamical seasonal prediction. Bull Am Meteorol Soc 81:2593–2606. doi :10.1175/1520-0477(2000)081<2593:DSP>2.3.CO;2CrossRefGoogle Scholar
  46. Shukla J, DelSole T, Fennessy M, Kinter J, Paolino D (2006) Climate model fidelity and projections of climate change. Geophys Res Lett 33:L07702. doi: 10.1029/2005GL025579
  47. Smith TM, Reynolds RW (2005) A global merged land-air-sea surface temperature reconstruction based on historical observations (1880–1997). J Clim 18:2021–2036. doi: 10.1175/JCLI3362.1 CrossRefGoogle Scholar
  48. Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science 310:841–844. doi: 10.1126/science.1115602
  49. Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC et al (2006) Transient climate simulations with the HadGEM1 climate model: Causes of past warming and future climate change. J Clim 19:2763–2782. doi: 10.1175/JCLI3731.1 CrossRefGoogle Scholar
  50. Sutton RT, Dong B, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett 34:L02701. doi: 10.1029/2006GL028164
  51. Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: Anal J Clim 14:445–466. doi :10.1175/1520-0442(2001)014<0445:ALSDMO>2.0.CO;2Google Scholar
  52. Ting M, Sardeshmukh PD (1993) Factors determining the extratropical response to equatorial diabatic heating anomalies. J Atmos Sci 50:907–918. doi :10.1175/1520-0469(1993)050<0907:FDTERT>2.0.CO;2CrossRefGoogle Scholar
  53. Zhang D, McPhaden MJ (2006) Decadal variability of the shallow Pacific meridional overturning circulation: Relation to tropical sea surface temperatures in observations and climate change models. Ocean Model 15:250–273. doi: 10.1016/j.ocemod.2005.12.005 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Climate Diagnostics Center, Cooperative Institute for Research in Environmental Sciences and Physical Sciences Division, Earth System Research LaboratoryNational Oceanic and Atmospheric AdministrationBoulderUSA

Personalised recommendations