Climate Dynamics

, Volume 33, Issue 2–3, pp 187–197 | Cite as

Marine cold-air outbreaks in the North Atlantic: temporal distribution and associations with large-scale atmospheric circulation

  • Erik W. Kolstad
  • Thomas J. Bracegirdle
  • Ivar A. Seierstad
Article

Abstract

The spatial and temporal distributions of marine cold air outbreaks (MCAOs) over the northern North Atlantic have been investigated using re-analysis data for the period from 1958 to 2007. MCAOs are large-scale outbreaks of cold air over a relatively warm ocean surface. Such conditions are known to increase the severity of particular types of hazardous mesoscale weather phenomena. We used a simple index for identifying MCAOs: the vertical potential temperature gradient between the sea surface and 700 hPa. It was found that atmospheric temperature variability is considerably more important than the sea surface temperature variability in governing both the seasonal and the inter-annual variability of MCAOs. Furthermore, a composite analysis revealed that a few well-defined and robust synoptic patterns are evident during MCAOs in winter. Over the Labrador and Irminger Seas the MCAO index was found to have a correlation of 0.70 with the North Atlantic Oscillation index, while over the Barents Sea a negative correlation of 0.42 was found.

Keywords

Cold air outbreak Polar low Arctic Meteorology NAO Climatology Climate Extreme weather Severe weather 

References

  1. Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126CrossRefGoogle Scholar
  2. Boyle JS (1986) Synoptic conditions in midlatitudes accompanying cold surges for the months of December 1974 and 1978. Part I: Monthly mean fields and individual events. Mon Wea Rev 114:903–918CrossRefGoogle Scholar
  3. Bracegirdle TJ, Gray SL (2008) An objective climatology of the dynamical forcing of polar lows in the Nordic Seas. Int J Climatol. doi:10.1002/joc.1686 (in press)
  4. Bresch JF, Reed RJ, Albright MD (1997) A polar-low development over the Bering Sea: analysis, numerical simulation, and sensitivity experiments. Mon Wea Rev 125:3109–3130CrossRefGoogle Scholar
  5. Cellitti MP, Walsh JE, Rauber RM, Portis DH (2006) Extreme cold air outbreaks over the United States, the polar vortex, and the large-scale circulation. J Geophys Res 111:D02114CrossRefGoogle Scholar
  6. Claud C, Duchiron B, Terray P (2007) Associations between large-scale atmospheric circulation and polar low developments over the North Atlantic during winter. J Geophys Res 112(D12):D12101. doi:10.1029/2006JD008251 CrossRefGoogle Scholar
  7. Craig G, Cho H (1988) Cumulus convection and CISK in the extratropical atmosphere, part I: polar lows and comma clouds. J Atmos Sci 45:2622–2640CrossRefGoogle Scholar
  8. Dorman CE, Beardsley RC, Dashko NA, Friehe CA, Kheilf D, Cho K, Limeburner R, Varlamov SM (2004) Winter marine atmospheric conditions over the Japan Sea. J Geophys Res 109:C12011CrossRefGoogle Scholar
  9. Doyle J, Shapiro M (1999) Flow response to large-scale topography: the Greenland tip jet. Tellus 51A:728–748CrossRefGoogle Scholar
  10. Grist JP, Josey SA, Sinha B (2007) Impact on the ocean of extreme Greenland Sea heat loss in the HadCM3 coupled ocean-atmosphere model. J Geophys Res 112:C04014. doi:10.1029/2006JC003629 CrossRefGoogle Scholar
  11. Grønås S, Skeie P (1999) A case study of strong winds at an Arctic front. Tellus 51A:865–879CrossRefGoogle Scholar
  12. Grossman RL, Betts AK (1990) Air-sea interaction during an extreme cold air outbreak from the eastern coast of the United States. Mon Wea Rev 118:324–342CrossRefGoogle Scholar
  13. Häkkinen S (2007) Upper ocean T-S variations in the Greenland Sea and their association to climatic conditions. J Geophys Res 112:C07004. doi:10.1029/2006JC003498 CrossRefGoogle Scholar
  14. Harold JM, Bigg GR, Turner J (1999) Mesocyclone activity over the North-East Atlantic. part 2: an investigation of causal mechanisms. Int J Climatol 19:1283–1299CrossRefGoogle Scholar
  15. Hartmann J, Kottmeier C, Raasch S (1997) Roll vortices and boundary-layer development during a cold air outbreak. Bound Layer Meteorol 84:45–65CrossRefGoogle Scholar
  16. Hoffman RN, Leidner SM (2005) An introduction to the near-real-time QuikSCAT data. Wea Forecast 20:476–493CrossRefGoogle Scholar
  17. Hurrell J (1995) Decadal trends in the North Atlantic Oscillation—regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  18. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation: climatic significance and environmental impact, American Geophysical Union, Geophysical Monograph, vol 134, chap 1, pp 1–35Google Scholar
  19. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  20. Kolstad EW (2006) A new climatology of favourable conditions for reverse-shear polar lows. Tellus 58A:344–354. doi:10.1111/j.1600-0870.2006.00171.x Google Scholar
  21. Kolstad EW, Bracegirdle TJ (2008) Marine cold-air outbreaks in the future: an assessment of IPCC AR4 model results for the Northern Hemisphere. Clim Dyn 30:871–885. doi:10.1007/s00382-007-0331-0 CrossRefGoogle Scholar
  22. Konrad CE, Colucci SJ (1989) An examination of extreme cold air outbreaks over eastern North America. Mon Wea Rev 117:2687–2700CrossRefGoogle Scholar
  23. Lystad M (1986) Polar lows project; final report: polar lows in the Norwegian, Greenland and Barents Sea. Technical report, The Norwegian Meteorological Institute (DNMI), Oslo, NorwayGoogle Scholar
  24. Mailhot J, Hanley D, Bilodeau B, Hertzman O (1996) A numerical case study of a polar low in the Labrador Sea. Tellus 48A:383–402Google Scholar
  25. Moore GWK (2003) Gale force winds over the Irminger Sea to the east of Cape Farewell, Greenland. Geophys Res Lett 30:1894CrossRefGoogle Scholar
  26. Moore G, Renfrew I (2005) Tip jets and barrier winds: a QuikSCAT climatology of high wind speed events around Greenland. J Clim 18:3713–3725CrossRefGoogle Scholar
  27. Noer G, Ovhed M (2003) Forecasting of polar lows in the Norwegian and the Barents Sea. In: Proceedings of the 9th meeting of the EGS Polar Lows Working Group, Cambridge, UKGoogle Scholar
  28. Pagowski M, Moore G (2001) A numerical study of an extreme cold-air outbreak over the Labrador Sea: sea ice, air-sea interaction, and development of polar lows. Mon Wea Rev 129:47–72CrossRefGoogle Scholar
  29. Pickart RS, Spall MA, Ribergaard MH, Moore GWK, Milliff RF (2003) Deep convection in the Irminger Sea forced by the Greenland tip jet. Nature 424:152–156. doi:10.1038/nature01729 CrossRefGoogle Scholar
  30. Rasmussen E, Turner J (2003) Polar Lows: mesoscale weather systems at high latitudes. Cambridge University Press, CambridgeGoogle Scholar
  31. Renfrew IA, Moore G (1999) An extreme cold-air outbreak over the Labrador Sea: roll vortices and air-sea interaction. Mon Wea Rev 127:2379–2394CrossRefGoogle Scholar
  32. Rogers J (1997) North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J Clim 10:1635–1647CrossRefGoogle Scholar
  33. Seierstad IA, Stephenson DB, Kvamstø NG (2007) How useful are teleconnection patterns for explaining variability in extratropical storminess? Tellus 59A:170–181. doi:10.1111/j.1600-0870.2007.00226.x Google Scholar
  34. Skeie P (2000) Meridional flow variability over the nordic seas in the arctic oscillation framework. Geophys Res Lett 27:2569–2572CrossRefGoogle Scholar
  35. Thompson D, Wallace J (2001) Regional climate impacts of the Northern Hemisphere annular mode. Science 293:85–89CrossRefGoogle Scholar
  36. Wilhelmsen K (1985) Climatological study of gale-producing polar lows near Norway. Tellus 37A:451–459CrossRefGoogle Scholar
  37. Wu B, Wang J, Walsh J (2006) Dipole anomaly in the winter arctic atmosphere and its association with sea ice motion. J Clim 19:210–225. doi:10.1175/JCLI3619.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Erik W. Kolstad
    • 1
  • Thomas J. Bracegirdle
    • 2
  • Ivar A. Seierstad
    • 3
  1. 1.Bjerknes Center for Climate ResearchBergenNorway
  2. 2.British Antarctic SurveyCambridgeUK
  3. 3.Geophysical instituteUniversity of BergenBergenNorway

Personalised recommendations